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Cognitive-attentional mechanisms of cooperation – with implications for attention-deficit 

hyperactivity disorder and cognitive neuroscience 

 

Abstract 

People’s cooperativeness depends on many factors, such as their motives, cognition, 

experiences, and the situation they are in. To date, it is unclear how these factors interact and shape 

the decision to cooperate. We present a computational account of cooperation that not only 

provides insights for the design of effective incentive structures but also redefines neglected social-

cognitive characteristics associated with attention-deficit hyperactivity disorder (ADHD). 

Leveraging game theory, we demonstrate that the source and magnitude of conflict between 

different motives affected the speed and frequency of cooperation. Integrating eye-tracking to 

measure motivation-based information processing during decision-making shows that 

participants’ visual fixations on the gains of cooperation rather than its costs and risks predicted 

their cooperativeness on a trial-by-trial basis. Using Bayesian hierarchical modeling, we find that 

a situation’s prosociality and participants’ past experience each bias the decision-making process 

distinctively. ADHD characteristics explain individual differences in responsiveness across 

contexts, highlighting the clinical importance of experimentally studying reactivity in social 

interactions. We demonstrate how the use of eye-tracking and computational modeling can be used 

to experimentally investigate social-cognitive characteristics in clinical populations. We also 

discuss possible underlying neural mechanisms to be investigated in future studies. 

Keywords: cooperation; computational modeling; social cognition; game theory; experimental 

economics; Bayesian hierarchical modeling; eye-tracking; computational psychiatry; ADHD 
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Introduction 

Cooperation has never been more relevant in a world shaped by climate change, pandemic 

outbreaks, and armed conflicts. Moreover, the nature of cooperation has considerably changed due to 

technological advancements, leading to increased strategic interactions not only between humans but 

also between humans and artificial agents (Agrawal et al., 2019; Camerer, 2019; March, 2021). Studies 

(Ostrom, 2000; Rand & Nowak, 2013; Skyrms, 2004; Van Lange et al., 2014) examining the factors 

that determine cooperation show that people are more cooperative if they believe others are too 

(Capraro et al., 2020; Capraro & Cococcioni, 2015; Rankin et al., 2000); or if they experienced 

cooperation before (Bolton et al., 2016; Clark & Sefton, 2001; Duffy & Feltovich, 2006). However, 

how these factors interact and produce cooperation remains unclear. How do situational determinants, 

past experiences, and cognitive characteristics shape the decision to cooperate? Answering this question 

helps to understand why a person cooperates in one situation but not in another. Moreover, different 

situations confront people with distinct trade-offs between the benefits, risks, and costs of cooperation. 

How much people attend to the gains of cooperation rather than the costs and risks might predict their 

cooperativeness. Eventually, examining how people adjust their cooperativeness across contexts might 

generate insights for interventions that promote (or mitigate) cooperation.  

Studying how people adjust their cooperativeness across different contexts might also provide 

psychiatric insights (Ging-Jehli et al., 2021). Specifically, cooperation requires cognitive control to 

form beliefs about other’s actions and to balance the gains and risks/costs of cooperation (Frank, 2016; 

Glimcher & Fehr, 2013; Isler, Gächter, et al., 2021; Isler, Yilmaz, et al., 2021; Kocher et al., 2017; 

Koenigs & Tranel, 2007; Westbrook et al., 2021). Cognitive control is particularly important when 

situations repeatedly change as they require more frequent adjustments in beliefs and actions (Cools & 

D’Esposito, 2011; Frank, 2016; Wiecki & Frank, 2013). The efficiency of these control mechanisms 
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have been shown to depend on the dynamics in neuronal components known as the basal ganglia and 

the frontostriatal pathway (Cavanagh et al., 2011; Cavanagh & Frank, 2014; Doi et al., 2020; Frank, 

Samanta, et al., 2007; Isoda & Hikosaka, 2008; van Schouwenburg et al., 2014). These neuronal 

components are deficient in attention-deficit hyperactivity disorder (ADHD) (Cubillo et al., 2012; 

Frank, Santamaria, et al., 2007; Ging-Jehli et al., 2021; Krain & Castellanos, 2006; Kumar et al., 2022; 

McLoughlin et al., 2014; Rubia et al., 2011; Ziegler et al., 2016). Importantly, biological models of 

dopaminergic influences (Frank, 2016; Moolchand et al., 2022) and neuronal networks of corticobasal 

ganglia circuits (Durstewitz & Seamans, 2008; Frank, Samanta, et al., 2007; Frank & O’Reilly, 2006) 

show how gating mechanisms in the basal ganglia facilitate selective information processing and more 

refined behavioral adaptations across contexts (Jaskir & Frank, 2023; Wiecki & Frank, 2013). Since 

ADHD has been associated with disruption in these neuronal components, we hypothesized that 

pronounced behavioral change across contexts (referred to as over-reactivity) might represent an 

important but experimentally understudied social-cognitive characteristic of ADHD as already 

suggested by other research (Ging-Jehli et al., 2021). This could also explain why ADHD is associated 

with difficulties in developing and maintaining relationships (American Psychiatric Association, 2000; 

Ginapp et al., 2023). Specifically, dysfunctions in subcortical gating mechanisms might lead to deficits 

in reward and emotion processing which can lead to exaggerated over-reactive behavior (Champ et al., 

2022; Craig et al., 2017; Ma et al., 2017; Nijmeijer et al., 2008; Uekermann et al., 2010). To date, it is 

unclear whether over-reactivity indexes a hallmark of ADHD; and whether this hallmark is observable 

and quantifiable using simulated strategic interactions. 

Game theory has been used to develop laboratory paradigms (also known as games) to study 

human cooperation (Rapoport, 1987; Suleiman et al., 2004; Thielmann et al., 2020; Van Lange et al., 

2014; Von Neumann & Morgenstern, 1944). In these games, paired participants simultaneously decide 
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whether to cooperate by choosing between cooperative and non-cooperative options, each option being 

associated with distinct payoffs. The Prisoner’s Dilemma (PD; (Poundstone, 1993; Von Neumann & 

Morgenstern, 1944) and the Stag-Hunt (SH; (Skyrms, 2004; Snidal, 1985; Weber, 2018) are two game 

types for studying cooperation (Rapoport & Chammah, 1965; Taylor, 1987; van Baar et al., 2022; Van 

Lange et al., 2014). The PD exemplifies real-world social dilemmas with incongruent incentive 

structures (Van Lange et al., 2014). That is, each participant has a monetary incentive to exploit the 

counterpart’s cooperativeness by choosing the non-cooperative option. If both participants choose the 

non-cooperative option, both receive less than if they had both chosen the cooperative option. The SH 

exemplifies real-world coordination problems with congruent incentive structures (Skyrms, 2004; 

Snidal, 1985). That is, each participant has an incentive to match their response to that of their 

counterpart.  

PD and SH games both involve strategic uncertainty; i.e., the uncertainty about the 

counterpart’s choice (Weber, 2018). However, they introduce distinct sources of motivational conflict; 

i.e., opposing forces that favor the cooperative versus non-cooperative options (Capraro et al., 2020; 

Goetze, 1994; Snidal, 1985; Weber, 2018). In SH, the tension between cooperation gain and risk arises 

from strategic uncertainty. In PD, this tension is augmented by cooperation costs and exploitability due 

to incongruent incentives. Recent research (Capraro et al., 2020; van Baar et al., 2022) suggests that 

PD games activate mindsets of distrust because incongruent incentives impose conflicts of interest 

(Bolton et al., 2016; Schul et al., 2004). If this hypothesis is valid, such mindsets should not be activated 

in SH games due to the congruency of incentives. Hence, different conflict sources might affect the 

structure of the decision-making process differently. The activation of these different mindsets might 

also affect how much (overt) attention participants allocate to gains versus risks and costs of 

cooperation. 
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How variation in motivational conflict affects the decision-making process of cooperation 

remains unstudied. Past research focused on one conflict source (mostly PD games) and examined the 

effect of stress (Alós-Ferrer & Garagnani, 2020; Belloc et al., 2019; Capraro & Cococcioni, 2015; Rand 

et al., 2014), and/or used summary statistics such as mean reaction times (RTs) or response frequency 

rates (Evans et al., 2015; Evans & Rand, 2019; Grossmann et al., 2017; Rubinstein, 2007; Spiliopoulos 

& Ortmann, 2018). Here, we consider a process-oriented account with the diffusion decision model 

(DDM; Ratcliff, 1978). The DDM is a sequential sampling model that decomposes the decision-making 

process into distinct mental components (Capra et al., 2020; Forstmann et al., 2016; Ging-Jehli et al., 

2021). In these models, choices (and RTs) are produced by the accumulation of evidence for the 

available response options. The diffusion process describes evidence accumulation toward the 

cooperative and non-cooperative options (Figure 1a). Sequential sampling models are valuable for their 

ability to explain behavior from cognitive tasks (Forstmann et al., 2016; Ging-Jehli & Ratcliff, 2020; 

Logan et al., 2014; Ratcliff & Smith, 2004) and value-based decision tasks similar to the games 

described above (Busemeyer & Townsend, 1993; Cavanagh et al., 2011; Krajbich et al., 2010; Krajbich 

& Rangel, 2011; Pedersen & Frank, 2020). They use more information than summary statistics because 

parameters are estimated by simultaneously considering response frequency rates and the entire RT 

distributions (Van Zandt & Ratcliff, 1995). Some studies have leveraged sequential sampling models 

to study altruistic giving or prosocial preferences within one context (Capra et al., 2020; Chen & 

Krajbich, 2018). In this study, we used the DDM to decompose performance in strategic social settings 

used to study cooperation. 

The DDM involves four main parameters: drift rate (how quickly and in what direction 

information accumulates), boundary separation (how much information is required for a decision), 

starting point (how much information is in the system before the accumulation process starts), and 
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nondecision time. These parameters capture different psychological factors leading to RT distributions 

and choice frequencies. Larger drift rates indicate less motivational conflict, leading to faster (and less 

skewed) RTs and more frequent cooperative choices. Larger boundary separation represents a more 

cautious response strategy, resulting in slower (and more skewed) RTs and more cooperative choices. 

Starting points closer to the cooperative boundary capture people’s prejudice to cooperation, resulting 

in large changes in the tail and leading edge of the RT distributions. Nondecision time subsumes non-

decision processes (e.g., perceptual encoding), resulting in shifts of RT distributions. Hence, each 

model parameter represents a distinct psychological channel through which situational determinants 

and clinical characteristics can affect the decision-making process. 

 
Figure 1. A computational account of cooperation across contexts. In the DDM,(Ratcliff, 1978) 

choices result from noisy trajectories that have a starting point (z) and that evolve up to a threshold, 

indicating type and speed of choices. Decisions that lead to cooperative choices are represented in 

black, ending at the upper boundary (a). Decisions that lead to non-cooperative choices are represented 

in grey, ending at the lower boundary (0). Drift rate (v) represents the mean rate of evidence 

accumulation. Shown are four diffusion processes, simulating the time course of evidence accumulation 

for four rounds of play.  
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We examined participants’ cooperativeness across contexts, accounting for situational 

determinants (i.e., source and size of motivational conflict; prosociality of the setting; past experiences) 

and cognitive characteristics (i.e., inattention; hyperactivity-impulsivity). To do so, we developed a 

cooperation paradigm using different PD and SH games. This created a series of situations with distinct 

trade-offs between gains and risks (and costs) of cooperation. Participants were rematched with 

different counterparts at the end of every third round of play. In each round, they decided between 

cooperative and non-cooperative options.  

The application of computational modeling allowed us to examine how different situational 

determinants affected the decision-making process through distinct cognitive channels; and whether 

ADHD was characterized by larger parameter changes across situations (a proxy for reactivity across 

contexts). To do so, we utilized payoff quadrants that have been associated with distinct motives by 

game theory (Ahn et al., 2001; Axelrod, 1967; Moisan et al., 2018; Rapoport & Chammah, 1965; Van 

Lange et al., 2014). Specifically, on-diagonal quadrants present cooperation gains, whereas off-

diagonal quadrants present cooperation risks and costs (Figure 2a). Using eye-tracking we tested 

whether participants’ cooperativeness was predictable by measures of their visuospatial attention (i.e., 

fixation duration) directed to cooperation gains relative to risks and costs (Figure 2b). 

 
Figure 2. Motivation-based information processing during decisions. a. Payoff matrix (with black 

boxes corresponding to participants’ payoffs and gray boxes corresponding to counterparts’ payoffs) 
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in motivational space: R=reward for cooperation; P=punishment for non-cooperation; T=temptation to 

exploit others’ cooperativeness; S=sucker’s payoff when one’s own cooperativeness is exploited by 

others. Roman numerals label the four quadrants. Based on game theory, on-diagonal quadrants (I & 

III) refer to the gains of cooperation, whereas off-diagonal quadrants (II & IV) refer to the (opportunity) 

costs and risks of cooperation. b. Two distributions of visuo-spatial attention (i.e., fixation duration). 

The left panel shows a motivation-based gazing ratio (MBGR) larger than one: Cooperation gain 

attracted more attention than cooperation costs and risks. The right panel shows an MBGR smaller than 

one: Cooperation gain attracted less attention than cooperation costs and risks.  

 

 

To disentangle the relative influence of situational determinants and cognitive characteristics 

on behavior, counterparts were represented by computer players with predefined (but probabilistic) 

response strategies (see Methods). Computer players have been frequently used to examine cooperation 

in strategic interactions; that is, interactions in which participants’ outcomes not only depend on their 

own actions but also on counterparts’ actions (see for a review: March, 2021; see also: Andreoni & 

Miller, 1993; Crandall et al., 2018; Haruno & Kawato, 2009; Kangas et al., 2009; Mahon & Canosa, 

2012; Shubik et al., 1974). However, one might question whether the fact that participants engaged 

with computer players would eliminate the social aspect of cooperation. A recent review by March 

(2021) suggests that participants are less cooperative in strategic interactions with artificial agents but 

that those situations still involve strategic uncertainty and social-cognitive considerations. The use of 

computer players was particularly useful for the purpose of our study since we focused on how people’s 

cooperativeness changes across contexts (relative changes) not at the absolute level of cooperativeness 

per se. Moreover, it allowed us to disentangle the effect of specific situational determinants on specific 

mental components involved in the decision-making process.  

The purpose of this study was to examine how participants’ cooperativeness changes across 

simulated situations that differ in motivational conflict, prosociality, and prior outcomes. By so doing, 

we expected that individual differences in behavior is predictable by how much (overt) attention 

participants attribute to the gains versus the risks and costs of cooperation. Ultimately, we hypothesized 
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that our novel paradigm is also useful to study social-cognitive characteristics of ADHD that manifests 

in over-reactive responses to changes across situations.  

Methods 

Participant Characteristics 

Sixty-eight young adults (35 females), aged 18-35 years, participated. This sample size 

compares favorably to other neurocognitive studies (Ging-Jehli et al., 2021). Technical problems with 

data recording led to a data loss of two participants (both from the control group). Therefore, 66 

participants (32 controls, 34 ADHD) were included in the analyses. 

Inclusion was restricted to those who had: no serious head injury in the previous two years and 

who were not medicated for seizures. Participants in the ADHD group (n=34) had an ADHD diagnosis 

according to a semi-structured clinical interview (see Measures: K-SADS) and an ADHD symptom 

severity T-score of at least 64 (see Measures: CAARS-LV). They were also required to stop stimulants 

two days prior to the testing. Participants in the control group (n=34) needed an absence of any DSM-

5 defined mental health conditions as assessed with the K-SADS; and an ADHD symptom severity T-

score of at most 60 on the CAARS-LV. Participants received $20 for the completion of questionnaires 

and the clinical interview. They then received $20 for participation in the social-cognitive session 

(performance of the cooperation paradigm) plus any additional money they earned with their 

counterparts in the cooperation paradigm.  

Participants were clinically assessed prior to their visit (detailed below), assigning them to either 

the ADHD (n=34) or the control (n=32) group. The two groups were similar with respect to age 

(MADHD=24 years, SDADHD=5; Mcontrol=24 years, SDcontrol=4); gender (ADHD: 16 females; control: 17 

females); and summed IQ scores (MADHD=144, SDADHD=17; Mcontrol=139, SDcontrol=13). The control 

group had one more year of education than the ADHD group (MADHD=16, SDADHD=2; Mcontrol=17, 
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SDcontrol=3). We provide additional clinical characteristics in Supplemental Table S1 and Supplemental 

Figure S8.  

Study Procedure 

The Ohio State University Institutional Review Board (IRB) approved this study. Participants 

provided written informed consent prior to participation. Participants completed the questionnaires, 

clinical interview, and the cooperation paradigm in separate study sessions.  This study was conducted 

at a university in the Central Ohio metropolitan area (2 million people). Prospective participants were 

recruited through online recruiting platforms (e.g., researchmatch.org) and through flyers in local 

communities. 

The Cooperation Paradigm 

Our paradigm comprised 300 decisions to which we refer as trials. These 300 trials were 

subdivided into 100 games that each consisted of three rounds. After three rounds, participants were 

paired with a different counterpart with whom they had not interacted before. Counterparts were 

represented by computer players (detailed in subsection: Counterpart Types). The pairs’ mutual actions 

determined payments at the end of the session (detailed in subsection: Payoff Selection). Specifically, 

participants and counterparts separately decided between a cooperative and a non-cooperative option 

in each round. The information above was common knowledge to all participants. We collected choice 

data and reaction times for each round. We next detail the paradigm, while also referring to the 

illustrations in Supplemental Figures S1 and S2 that provide an overview of the most important task 

features. 

Procedure of a Game Round 
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Each round was divided into three stages: 1. Counterparts chose between the two response 

options; 2. Participants chose between the two options without knowing what their counterpart had 

chosen; and 3. Participants were informed about the outcome of that round after indicating their choice. 

Response Options 

In each round, the decision screen displayed a 2-by-2 payoff matrix1, illustrating the four 

possible outcomes based on participant’s and counterpart’s choices. The four quadrants of the matrix 

associate each option with an on-diagonal quadrant and an off-diagonal quadrant (Figure 2a). The 

cooperative option was defined as the option with the higher payoffs in the on-diagonal quadrant. The 

two response options were labeled as options X and Y to avoid framing effects (Camerer, 2003). 

Moreover, the cooperative option was presented either as option X or Y half of the time. The black 

boxes contained participants’ payoffs, while the grey boxes counterparts’ payoffs. The boxes were 

arranged so that the corners nearest to the center were equally distanced from the screen center. The 

numbers within the boxes were not perceptible when fixating at the screen center. This ensured that 

participants had to move their gaze to the location of the boxes to encode the numbers, ensuring the 

collection of meaningful eye-tracking data.  

Conditions 

The payoffs associated with each option systematically changed across rounds, varying 

incentive congruency and strategic uncertainty as follows:  

The first two rounds included payoff structures with congruent incentives. These payoff 

structures are also known as Stag-hunt (SH) games (Skyrms, 2004; Weber, 2018) and an example is 

illustrated in Figure 3. Matrices with SH structures varied in strategic uncertainty (low, medium, high) 

based on the relative difference in the minimal payoff of cooperative versus non-cooperative options 

 
1 We provide a list of all payoff matrices here: https://osf.io/m5xuh/?view_only=9e36d731ebc0404abd86b631261f6a06 
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(Skyrms, 2004). We therefore created three conditions with congruent incentives by categorizing the 

SH payoff matrices based on whether the minimal payoff for cooperation was higher, equal, or lower 

than the minimal payoff for non-cooperation (Figure 3).  

 
Figure 3. The 3 game structures and the 7 task conditions of our cooperation paradigm. a. The 

cooperation paradigm with variation in source and size of motivational conflict, leading to seven 

conditions. The highest on-diagonal payoff pair in the 2x2 payoff matrix defines the cooperative option, 

either presented as option X or Y. The black boxes in each payoff matrix refer to participants’ payoffs, 

while the gray boxes refer to counterparts’ payoffs. Shown are three examples (one for each game 

structure). The 2x2 payoff matrices varied on a trial-by-trial basis. 

 

 

The last round included payoff structures with either: 1. High strategic uncertainty and 

incongruent incentives (either low, medium, or high level), which are also known as Prisoners’ dilemma 

(PD) games (Dawes et al., 1990; Poundstone, 1993; Van Lange et al., 2014); or 2. With no strategic 
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uncertainty and congruent incentives (i.e., providing participants a larger payoff, irrespective of their 

counterpart’s choice). We refer to these payoff structures in 2. as the control condition. Matrices with 

PD structures varied in how much conflict they induce which can be quantified with the K-index 

(Moisan et al., 2018; Murphy & Ackermann, 2015). The K-index is based on early theoretical 

frameworks that provide a simple analytical way to measure the size of conflict in PD games (Axelrod, 

1967; Moisan et al., 2018; Rapoport & Chammah, 1965). It is the ratio of the difference between on-

diagonal payoffs to the difference between off-diagonal payoffs (Figure 2a). The K-index ranges from 

zero to one (excluding boundaries) with higher values indicating less tension. We therefore created 

three conditions with incongruent incentives by categorizing the PD payoff matrices (i.e., payoff 

matrices of each round with a PD structure) into terciles based on their K-index (Figure 3).  

Using SH and PD games with different conflict levels allowed us to examine how cooperation 

varied between different conflict sources (i.e., tensions between response options caused by the 

different payoff structures, inducing strategic uncertainty with/without congruent incentives), and 

conflict sizes (low, medium, high). To summarize, cooperation was relevant in all conditions except 

those with low or no strategic uncertainty. In those latter two conditions, the cooperative option yielded 

higher payoffs irrespective of the counterparts’ choices. 

Sequence of Games 

Matrices with PD structures occurred in rounds 3, while those with SH structures occurred in 

rounds 1 and 2. This allowed us to quantify the effect of participants’ prediction errors (i.e., deviations 

from participants’ expected outcomes)2 on their subsequent cooperativeness. To ensure that participants 

 
2 Since incentives were aligned in the first two rounds, participants’ choices in those rounds revealed their expectations 

about their counterparts’ cooperativeness (see Weber, 2018). Therefore, presenting payoff structures with incongruent 

incentives at the end of each game allowed us to examine whether positive or negative surprises shifted participants’ 

cooperativeness under incongruent incentives. 
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did not choose non-cooperation by default in the last game rounds, we sometimes presented a control 

game with cooperation being the strictly dominant choice (i.e., no motivational conflict). 

Composing games with three rounds allowed us to examine how past experiences affected 

participants’ choices in subsequent rounds (and whether participants transferred past experiences to 

subsequent games). Since incentives were aligned in the first two rounds, participants’ choices in those 

rounds revealed their expectations about their counterparts’ cooperativeness. This is because SH 

structures incentivize participants to choose the option that they believe their counterpart is going to 

choose (see for a review: Weber, 2018). 

Therefore, we defined outcomes in the first two rounds as positive surprises if participants chose 

non-cooperation, and their counterparts chose cooperation. Similarly, we defined outcomes as negative 

surprises if participants chose cooperation, and their counterparts chose non-cooperation. Presenting 

payoff structures with incongruent incentives at the end of each game allowed us to examine whether 

positive or negative surprises shifted participants’ cooperativeness under incongruent incentives. It also 

ensured that participants had no opportunity to punish/reward their counterparts in subsequent rounds, 

motives known to affect cooperativeness (Camerer, 2003; Fehr & Gächter, 2000). 

Counterpart Types 

Participants’ counterparts were displayed as computer players that had pre-determined but probabilistic 

response strategies (being either more or less cooperative). This allowed us to simulate prosocial and 

antisocial settings. Specifically, more cooperative counterparts chose the cooperative option with 

probability 1 in rounds 1; and with probability 0.7 in rounds 2 & 3. In contrast, uncooperative 

counterparts chose the cooperative option with probability 0 in rounds 1; and with probability 0.3 in 

rounds 2 & 3. At the beginning of the experiment, participants were informed that the computer players 
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had different response strategies. However, they did not know the players’ type (i.e., degree of 

cooperativeness) in a game, and they also did not know how many types there were in the paradigm. 

Setting 

The 100 tournaments were subdivided into four blocks (each block containing 25 tournaments 

that each were composed of 3 rounds). In the first and third blocks, counterparts were from the 

cooperative type, responding predominantly cooperatively. This created two predominantly 

cooperative settings. In the second and fourth blocks, counterparts were from the uncooperative type, 

responding predominantly uncooperatively. This created two predominantly uncooperative settings. 

Importantly, the payoff structures (i.e., 2x2 payoff matrices) in the first and third blocks were identical 

to those in the second and fourth blocks. Hence, any differences in participants’ cooperativeness across 

blocks could not be explained by any differences in the payoff structures. This setup allowed us to 

examine the effects of setting on participants’ cooperativeness; and to disentangle the effects of setting 

and participants’ past experience (i.e., expected/unexpected positive or negative prior outcomes) on 

their cooperativeness. Therefore, all participants were presented the same block order. 

Payoff Selection 

One of the 300 trials was randomly selected, and the outcome of that selected trial was then 

implemented at the end of the paradigm. Specifically, participants earned the selected outcome in 

addition to their study payment ($1 to $19). 

Eye-tracking 

We collected gaze locations using the GP3-HD eye tracker (sampling rate: 150Hz) from 

Gazepoint (Cuve et al., 2021; Gazepoint, 2021). The eye tracker was attached to the desk in front of 

the participant’s monitor. To position participants in front of the monitor, we used the Gazepoint’s 

software (monitoring window) and physical measurements (i.e., angle: 45○; distance to participants’ 

eyes: 72cm). The standard viewing distance was set to 75cm which corresponds to a visual angle of 
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0.042 by 0.042 degrees per pixel on the 640 by 480 resolution monitor. A 5-point location scheme 

calibration was used for the eye tracker, after instructing participants on the cooperation paradigm.  

Processing Gaze Data 

We used our own Matlab scripts (Version 2021a; (The Math Works, Inc., 2020) to process the 

gaze data, excluding first any data flagged as invalid (e.g., blinks) by the eye-tracker ((Cuve et al., 

2021). We then extracted the gaze data during the presentation of the decision screen (i.e., the time 

from stimulus onset up to key press). We next applied a trial-by-trial drift correction using the center 

of the fixation screen as reference as is common practice (Holmqvist et al., 2011). We did not further 

preprocess gaze data (no smoothing, filtering, interpolation) to prevent data distortions (such as 

artificial improvement in accuracy and/or precision).  

Gaze Measures 

The eight boxes on the 2x2 payoff matrix, containing the payoff information, are the eight 

spatially defined areas of interests (AOIs) that we used to understand how participants acquired 

information (Capra et al., 2020). It is a common practice (Capra et al., 2020) to distinguish between 

saccades (i.e., rapid eye movements to shift one’s gaze from one location to another) and fixations (i.e., 

stimulus processing by holding gaze on an area of interest for longer). It has been shown that fixations 

are typically at least 70ms long and last around 200ms to 300ms at most (Holmqvist et al., 2011; 

Salvucci & Goldberg, 2000). We therefore extracted the following four gaze measures for each round: 

1. The total number of fixations (i.e., uninterrupted fixation on a AOI that lasts at least 70ms); 2. The 

average fixation duration (i.e., summed duration of fixations divided by the total number of fixations); 

3. The number of fixations for each AOI; and 4. The average fixation duration for each AOI.  

Motivation-based Gazing Ratio (MBGR) 
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We were interested in whether the relative magnitude of (overt) attention on cooperation gains 

versus cooperation costs and risks would predict participants’ cooperativeness on a trial-by-trial basis. 

Specifically, we summed the fixation duration in quadrants I and III and divided that sum by the fixation 

duration in quadrants II and IV. By so doing, we leverage game theory, associating quadrants I and III 

with cooperation gains and quadrants II and IV with cooperation costs and risks (Mengel, 2018; 

Rapoport & Chammah, 1965). We refer to this motivation-based gazing ratio as MBGR. As a 

sensitivity analysis, we also calculated MBGR based on number of fixations rather than fixation 

durations which yielded the same results. 

Clinical Measures 

Schedule for Affective Disorders & Schizophrenia (K-SADS-PL-5) 

We administered the K-SADS-PL-5 (Chambers et al., 1985; Kaufman et al., 1997) a 

conventional semi-structured clinical interview, to formally confirm the absence/presence of ADHD 

and/or other DSM-5 defined mental health conditions such as mood disorders, anxiety, obsessive 

compulsive, trauma related disorders, neurodevelopmental, disruptive, and conduct disorders. A trained 

graduate student, under the guidance of a medical doctor specialized in psychiatry, administered the K-

SADS-PL-5 in a separate session prior to the social-cognitive testing. 

Conners’ Adult ADHD Rating Scale, long version (CAARS-LV) 

We administered the established CAARS-LV questionnaire (Conners et al., 1999) to measure 

symptom severity of total ADHD symptoms (G-section). The CAARS-LV was developed to assess 

adult ADHD, including severity scores and symptom counts based on the DSM-IV (American 

Psychiatric Association, 2000). It comprises 66 questions (response options ranging from 0 for never 

to 3 for very much). The CAARS-LV is a well-established clinical measure that provides T-scores, 

ranging from 25 to 90, with a score of 50 representing the average severity level of a symptom in the 
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normative population (scores above 64 represent elevated and possibly clinically significant 

symptoms).  

Non-clinical Measures 

Demographic Questionnaire 

At the beginning of the study, all participants answered a brief questionnaire indicating age, 

sex, and years of education. 

Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II) 

We used the WASI-II (Wechsler, 2011) an established IQ measure, to control for any 

intellectual differences between the control and ADHD group. Specifically, we used the three modules: 

vocabulary, matrix reasoning, and similarities. Scores for each module range from 40 to 160, and we 

provide the summed scores across the three modules in the Results section. 

Analytical Approach 

Before examining performance measures of the cooperation paradigm, we excluded data from 

the first game (i.e., practice game) for each participant as well as extreme reaction times (RTs) longer 

than 10 seconds (0.2% of all rounds across all participants. These RT outliers were evenly distributed 

among participants). 

Our analytical approach consisted of three parts: 1. Behavioral analyses, using performance 

measures and linear and single-trial logistic regressions within a Bayesian hierarchical framework; 2. 

Process-oriented analyses, using computational modeling within a Bayesian hierarchical framework; 

and 3. Bayesian’ hypothesis testing for examining ADHD-specific social-cognitive characteristics. For 

all analyses, we used the software R (Version 4.1.0; (R Core Team, 2021) and the brms (Version 2.16.2; 

(Bürkner, 2017a, 2017b) package as an interface to STAN ((Stan Development Team, 2021) a toolbox 

for estimating models within a Bayesian hierarchical framework. This approach has multiple 
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advantages discussed elsewhere (Gelman et al., 2012; J. K. Kruschke, 2013). As it is a common practice 

in Bayesian analyses, we report expected values (point estimates) and 95% credible intervals (CIs) for 

each model parameter and we refer to the Supplement for a brief description of CIs. 

Behavioral Analyses 

Analyzing differences in mean RTs across conditions, we used linear mixed regressions with 

participants’ mean reaction times (one for each condition) as outcome. The paradigms’ conditions 

served as a covariate (additionally including the clinical group for the clinical analysis discussed in the 

last part of the Result section). The general form of the main model can be written as follows: 

mean RTc,p ~ Gaussian(αpc), 

with the Greek letter indexing the coefficient, c referring to conditions and p referring to participants. 

The model was run with 4 chains (each with a total of 8,000 samples which included 2,000 burn-in 

samples). Model convergence was ensured by examining the trace plots and the Gelman-Rubin Ȓ 

statistic (Gelman & Rubin, 1992) which was below 1.1 for all model parameters. We used the default, 

weakly informative priors set by STAN (i.e., a flat prior for slopes and a half Student’s-t with 3 degrees 

of freedom and a scale parameter depending on the standard deviation of the response for intercepts 

and variances (Bürkner, 2017a, 2017b). For the assessment of clinical group differences, we included 

group (control versus ADHD) as an additional hierarchical level. 

Analyzing participants’ cooperativeness, we used single-trial logistic regressions with 

participants’ choices (1=choose cooperative option, 0=choose non-cooperative option) as the binary 

outcome. The model was specified as follows:  

choicepcgr ~ Bernoulli(𝛼𝑝𝑐𝑔𝑟), 
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whereby the Greek letter indexes the coefficient, p indexes participants, c indexes conditions, g indexes 

games, r indexes round. The model was run with 9 chains (each with a total of 4,000 samples which 

included 1,000 burn-in samples). Model convergence was ensured by examining the trace plots and the 

Gelman-Rubin Ȓ statistic (Gelman & Rubin, 1992) which was below 1.1 for all model parameters. We 

used weakly informative priors commonly used for logistic regression (Gelman & Hill, 2006; J. 

Kruschke, 2014; McElreath, 2016). That is, a normal distribution with mean equal to 0 and standard 

deviation equal to 5 for regression coefficients; an exponential distribution with parameter rate equal 

to 2 for standard deviations; and the Lewandowski-Kurowicka-Joe distribution (Lewandowski et al., 

2009) with scale parameter equal to 2 for correlations between pairs of regression coefficients. For the 

assessment of clinical group differences, we included group (control versus ADHD) as an additional 

hierarchical level. 

Computational Modeling 

We leveraged the DDM (Ratcliff, 1978) to decompose performance (i.e., choices and the entire 

RT distributions of cooperative and non-cooperative choices) into latent mental components. 

Modeling value-based decisions. While the DDM has originally been used to only account for 

decision processes in cognitive tasks (i.e., noisy sensory environments(Forstmann et al., 2016), research 

has also established its usefulness for understanding decision dynamics in tasks that include value-

based decisions like those in our cooperation paradigm (Cavanagh et al., 2011; Krajbich et al., 2010; 

Krajbich & Rangel, 2011; Pedersen & Frank, 2020). For those value-based decisions, the boundaries 

represent the two response options (Figure 1a: cooperative vs. non-cooperative choice). Hence, 

boundary separation (a) captures the trade-off between making speedy versus consistent decisions (i.e., 

the propensity to choose the same course of action across rounds with similar payoff structures; see 

also discussion by (Pedersen et al., 2021). Moreover, drift rates capture decision difficulty (i.e., quality 



COOPERATION ACROSS CONTEXTS  22 

 

of evidence accumulation) induced by task stimuli. In our context, stimulus difficulty arises from the 

conflict of the payoff structure (i.e., 2x2 payoff matrix as stimulus). Hence, we modeled cooperative 

decisions by assuming that the systematic variation of the payoff structures across rounds affects the 

evidence accumulation process (drift rate). Quantifying the starting point relative to the boundary 

separation measures biases towards cooperative vs non-cooperative choices (i.e., predispositions 

towards a choice prior to the presentation of a payoff matrix). The DDM assumes that RTs are the sum 

of decision processes and non-decision processes such as perceptual encoding and motor execution 

(Ratcliff & Smith, 2004). The non-decision times are denoted as Ter, which determines the location of 

the RT distribution (i.e., speed of the fastest responses). Because Ter only leads to shifts in the location 

of the RT distribution, it is often treated as a constant (Ratcliff & Smith, 2004). 

Base model. We started our computational analysis with a model that included the four main 

DDM parameters (a, z, v, Ter). In so doing, we modeled the decision process as a diffusion process (i.e., 

including within-trial variability in drift rate) but abstained from introducing additional variability 

parameters (i.e., variability in Ter, variability in z, across-trial variability in v). This is because an initial 

analysis showed that the inclusion of these additional variability parameters did not improve data fits. 

Instead, it added unnecessary model complexity, comprising risks of overfitting and trade-offs across 

parameters.  

Next, we found that a simpler model, fixing Ter to a constant, provided similar estimates to those 

of the initial model (Supplemental Table S2 & S3). Under the simpler model we treated Ter as an 

additional datapoint. Specifically, for each participant, response type (cooperation, non-cooperation), 

and condition, we calculated 70% of the fastest RT and subtracted that value from each RT. This shifted 

each RT distribution to the same location, introducing the assumption that perceptual encoding and 

motor execution was stimulus-independent (i.e., different values in the 2x2 payoff matrix do not affect 
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perceptual encoding of the decision screen). This approach has already been used in other applications 

(Ratcliff & Smith, 2004).  

For this study, we were interested in treating Ter as a constant due to the following reasons: first, 

we did not have theoretical reasons to assume that the perceptual encoding of 2x2 payoff matrices 

varied as a function of the paradigms’ conditions: the decision screen remained the same across all 

rounds of the paradigms, changing only the values in the matrices across rounds. Second, it was 

theoretically meaningful to assume that boundary separation (a) could serve as a potential channel for 

the effects of situational determinants (i.e., setting, prior outcomes) on the underlying decision-making 

process. However, boundary separation (a) and Ter can be negatively correlated (Ratcliff & Smith, 

2004). To avoid that boundary separations were simply larger due to smaller Ter for some blocks, fixing 

Ter was the more conservative analytical approach. 

Our final base model included the three main DDM parameters: a, z, and v. We introduced one 

drift rate (v) for each of the paradigm’s conditions (Figure 1a). Specifically, the base model captured 

choices and RTs for each condition with the Wiener first passage time likelihood function (Wfpt) which 

can be specified as follows: 

(choice, RT)p,c ~ Wfpt(ap, zp, vp,c, Ter|constant), 

with c referring to the paradigm’s conditions, and p referring to participants. This base model then 

served as a foundation for the comparison of different model specifications described next. All models 

included the same weakly informative priors, placing mass on broad range of reasonable values for 

DDM parameters: v ~ Cauchy(0,5); a ~ Normal(1.5, 1); zb ~ Normal(0.5, 0.2); σ ~ Student’s-t(3, 0, 

10); r ~ LKJ(2), with v referring to drift rate, a referring to boundary separation, zb referring to starting 

point bias (i.e., starting point relative to the boundary), σ referring to standard deviations, r referring to 
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correlations between pairs of regression coefficients, and LKJ referring to the Lewandowski-

Kurowicka-Joe distribution (Lewandowski et al., 2009). 

Model comparison. We systematically assessed the performance of different model versions. 

These models included theoretically meaningful but distinct assumptions about the cognitive channels 

(i.e., DDM parameters) through which the situational determinants (i.e., setting and prior outcome) 

affected the underlying decision-making process (Table 1). Specifically, we tested whether the setting 

and/or the prior outcomes modulated boundary separation (a) and/or starting point (z). To identify the 

model specification that best accounted for the data, we compared model performances using the 

Watanabe-Akaike Information Criterion (WAIC; (Watanabe, 2010) as well as out-of-sample 

predictions estimated by Bayesian leave-one-out (LOO) cross-validation (McElreath, 2016; Vehtari et 

al., 2017) implemented through the loo R package (Vehtari et al., 2017). Hence, the best-fitting model 

was the one that converged (Ȓ statistic was below 1.1 for all parameters), and that best accounted for 

the observed behavioral patterns with respect to both the leave-one-out cross-validation, and posterior 

predictive checks (provided in the Supplement). 

After establishing the best-fitting model, we extended that model with our trial-based gaze 

measure of interest, namely the motivation-based gazing ratio (MBGR; see section: Eye-tracking) 

which is a continuous variable. This allowed us to assess whether trial-based drift rates (v) changed not 

only as a function of the paradigm’s conditions but also as a function of the attentional magnitude on 

cooperation gains versus costs and risks. Indeed, including the gaze measures (MBGR) improved the 

model as indicated by a reduction in the WAIC from 63,480 (i.e., Table 1: best-fitting model) to 53,799. 

Therefore, the final best-fitting model discussed in this manuscript included drift rates specified as:  

vct = 𝛼𝑐 + 𝛽𝑐 ∗ 𝑀𝐵𝐺𝑅𝑐𝑡, 
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where t refers to trials, c refers to condition, and MBGR (continuous variable) refers to the mean-

centered motivation-based gazing ratio. Note that the attentional measure was hierarchically mean-

centered before entering it as a covariate (Jackman, 2009). Boundary separation (as) and starting points 

(zst) were specified as: 

as = 𝛼[𝑠], 

zst = 𝛼[𝑠] + 𝛽[𝑠]𝑡 ∗ 𝑝𝑟𝑖𝑜𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒[𝑠]𝑡(𝑤ℎ𝑒𝑟𝑒 𝑟>1) +  𝛿𝑡 ∗  𝑔𝑎𝑚𝑒 𝑠𝑡𝑎𝑟𝑡𝑡(𝑤ℎ𝑒𝑟𝑒 𝑟=1) 

where t refers to trials, s (index variable) refers to setting (i.e., the paradigm’s four blocks), and r refers 

to the three rounds of each game. We also show good parameter recovery based on additional sensitivity 

analyses in Supplemental Figure S4 and S5. 

Fitting procedure.  As for the behavioral analyses, we fitted the DDM models to data within a 

Bayesian hierarchical framework implemented through brms and STAN (Bürkner, 2017b; Stan 

Development Team, 2021). All models were run with 4 chains (each with a total of 6,000 samples 

which included 2,000 burn-in samples). Model convergence was ensured by examining the trace plots 

and the Gelman-Rubin Ȓ statistic (Gelman & Rubin, 1992) which was below 1.1 for all model 

parameters. All models included the same weakly informative priors specified in the subsection Base 

model. We also exemplify our modeling script for this study (including sample data)3.  

Model validation.  We used posterior predictive checks reported in the Supplement, assessing 

that the models captured the observed data (i.e., choice and response time patterns) well.  

Bayesian Hypothesis Testing 

We used Bayesian hypotheses testing to examine group-specific clinical differences. We report 

Bayes’ Factors (BF) and posterior probabilities (PP) as it is common (van Doorn et al., 2021); 

 

3 https://osf.io/m5xuh/?view_only=9e36d731ebc0404abd86b631261f6a06 
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(Andraszewicz et al., 2015). Moreover, we report expected values (point estimates) and 95% credible 

intervals (CIs) for each model parameter and we refer to the Supplement for a brief description of CIs. 

We also provide posterior means and credible intervals (CIs) of the best-fitting DDM model in the 

Supplementary Tables S4 & S5. 
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Results 

We first provide a summary of reaction times and cooperation rates across conditions 

before we introduce a computational account of the underlying decision-making process of 

cooperation. 

Descriptive Analyses 

Cooperative choices are associated with distinct gaze patterns. Participants’ 

cooperativeness decreased from 95% under no conflict to 40% under high strategic uncertainty 

(Figure 4a). Introducing incongruent incentives (keeping strategic uncertainty high), decreased 

cooperation to 10% and 15% for high and low incongruency, respectively. Bayesian hypothesis 

tests suggested that this 5%-difference in cooperation rate (CR) was systematic; posterior 

probability (PP) that (CRhigh incongruency<CRlow incongruency)=1.00.4 

 
Figure 4. Aggregated performance by choice and condition. a. Mean frequency rates of 

cooperative choices by condition. b. Mean frequency rates of cooperative choices by condition for 

three MBGR levels (averaged over participants) with vertical bars representing standard errors. 

MBGR was a continuous variable but trichotomized for illustration purposes. c. Mean reaction 

times by condition (averaged over participants) with vertical bars representing standard errors. 

 

 

 
4 Bayes’ Factor (BF) = 200.34; mean difference (log odds): -0.52, 95%-CI = [-0.85,-0.19]. 
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Figure 4b illustrates how MBGR affected cooperation frequencies for each condition. For 

illustration purposes, we show the effects for three MBGR levels (even though MBGR was treated 

as a continuous variable in any statistical analyses; see Methods). Participants were more 

cooperative when they focused on the gains rather than the risks and costs of cooperation as shown 

in Figure 4b by the black dots that are above the grey dots for the conditions for which cooperation 

is more relevant.5 

The speed of cooperative choices depends on source and size of motivational conflict. 

Whether cooperative choices were faster than non-cooperative choices depended on the source of 

conflict (Figure 4b). Under congruent incentives (SH games), cooperative choices were on average 

280ms (SD=78ms) faster than non-cooperative choices and the estimated posterior probability 

(PP) that mean RTcooperation<mean RTnon-cooperation=1.00.6 Under incongruent incentives (PD 

games), cooperative choices were on average 469ms (SD=33ms) slower than non-cooperative 

choices and the estimated PP that mean RTcooperation>mean RTnon-cooperation=1.00.7 We provide 

additional descriptive results in Supplementary Figure S9. 

Diffusion Decision Model Analyses 

Using the DDM, we examined how situational determinants (i.e., condition, setting, prior 

outcome, and MBGR) influenced the decision-making process. This allowed us to simultaneously 

consider the frequency and speed of cooperative and non-cooperative choices. We use the term 

 
5 Averaging estimates across all conditions, the estimated posterior probability (PP) that CR for higher (1SD above 

the mean) MBGR is larger than CR for MBGR at the mean = 1.00; corresponding BF = 507.47; estimated mean 

difference (log odds): 5.13, 95%-CI = [2.30, 7.88]. We provide detailed statistics in the Supplementary Table S4 and 

Figure S10 also shows the effects of MBGR on accuracy for quartiles of MBGR values. 
6 BF = 140.18; log mean difference: 0.23, 95%-CI = [0.02, 0.46]. 
7 BF = 856.14; log mean difference: -0.41, 95%-CI = [-0.75, -0.10]. 
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setting to refer to blocks of games in which counterparts’ response strategy was either cooperative 

or non-cooperative (see Methods). 

We compared a sequence of nested models (Table 1), fitting each to the data using 

hierarchical Bayesian modeling. Each model is based on different, theoretically meaningful 

assumptions about the psychological channel through which the determinants affected the 

decision-making process. Specifically, stimulus-driven attributes like motivational conflict 

(payoffs) and gaze patterns might influence drift rates which reflect the speed of stimulus 

processing. Prior outcomes might influence starting points which reflects biases of subsequent 

decisions towards cooperation or non-cooperation. The setting might contribute to biases in 

starting points and/or affect participants’ boundary separation which reflects participants’ overall 

response cautiousness. Leave-one-out cross-validation was used to compare the fits of the different 

models. We then chose the best-fitting model in Table 1 and expanded it to include our gaze 

measure of interest (MBGR). Details are provided in the Methods. 

The model around which our results are organized is specified in Table 1 and in the 

Methods (subsection: Computational Modeling). Posterior predictive checks, parameter recovery 

analyses, and the results from other models (leading to the same findings reported here) are 

presented in the Supplement. Posterior means and 95% credible intervals (CIs) are illustrated in 

Figure 5 and reported in Supplementary Table S5. The parameter, nondecision time (Ter), was 

computed from the fastest RTs (detailed in the Methods). 

 



COOPERATION ACROSS CONTEXTS  30 

 

Table 1. Diffusion decision model (DDM) selection for behavioral data. 

Model Parameters WAIC LOO cross-validation 

Label 
Drift rate 

(v) by 

Starting point  

(z) by 

Boundary separation  

(a) by 
Estimate SE Δelpd Δse Rank 

1 condition setting & prior outcome & game start setting 63480 351 0 0 1 

2 condition prior outcome & game start setting 63867 356 -187 28 2 

3 condition round & prior outcome setting type 65695 351 -1101 51 3 

4 condition prior outcome & game start setting type 65733 353 -1119 52 4 

5 condition prior outcome setting type 65765 356 -1135 54 5 

6 condition setting type prior outcome 65816 356 -1160 57 6 

7 condition fixed setting type 66054 358 -1277 59 7 

8 condition fixed setting type & prior outcome 66069 359 -1288 60 8 

9 condition round & prior outcome constant 66106 356 -1305 58 9 

10 condition setting type constant 66151 359 -1327 62 10 

11 condition prior outcome & setting type constant 66163 359 -1334 62 11 

12 condition fixed prior outcome 66201 362 -1351 65 12 

13 condition prior outcome constant 66234 361 -1369 64 13 

Base condition fixed constant 66415 359 -1457 65 14 

14 condition constant constant 66628 365 -1563 70 15 

Different DDMs (one model per row, detailed in the Methods). Models are presented in decreasing order of fitness, with the best-fitting 

model first (indicated by the last column). Condition refers to the paradigm’s seven conditions (Figure 3). Setting refers to the paradigm’s 

four blocks. Prior outcome refers to the four possible outcomes in the previous round ({cooperation, cooperation}, {non-cooperation, 

non-cooperation}, {non-cooperation, cooperation}, {cooperation, non-cooperation} with the first term in the curly brackets referring to 

the participant’s choice and the second term referring to the counterpart’s choice). Setting type refers to the two block types based on 

counterparts’ response strategy (prosocial vs. antisocial). Game start equals one for rounds 1, and equals two for rounds 2 & 3. This 

allowed us to introduce separate starting point biases for the beginning of new games (see Methods). Fixed means that the starting point 

was set to be equidistant from each decision boundary (excluding starting point biases). Constant means that we kept the parameter 

constant throughout the paradigm, introducing one parameter per participant. WAIC = Watanabe-Akaike information criterion for which 

lower values indicate better fits. LOO = leave-one-out cross-validation. Δelpd = difference in expected log pointwise predictive density 

as compared to the best-fitting model. Δse = difference in expected standard errors as compared to the best-fitting model. 
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Situational determinants affect the decision-making process. Parameters extracted from the 

best-fitting model demonstrated that variation in conflict and MBGR affected drift rates (Figure 5a). 

As strategic uncertainty increased, those with lowest MBGRs showed the largest change in drift rates 

towards non-cooperative choices. This indicates that more attention on costs/risks of cooperation 

(rather than gains) was associated with more difficult cooperative decisions. Under incongruent 

incentives, non-cooperative decisions were easier (larger negative drift rates) with little variation across 

levels of conflict for MBGR below the grand mean. For MBGR above or at the grand mean, drift rates 

increased as incongruency decreased. For MBGR above the grand mean, the estimated posterior mean 

vhigh incongruency=-0.50 (SD=0.13), estimated posterior mean vlow incongruency=-0.25 (SD=0.13), and the PP 

that the estimated posterior mean vhigh incongruency<mean vlow incongruency=1.00; BF > 500. For MBGR at 

the grand average, the estimated posterior mean vhigh incongruency=-0.88 (SD=0.03), estimated posterior 

mean vlow incongruency=-0.75 (SD=0.03), and the PP that the estimated posterior mean mean vhigh 

incongruency< mean vlow incongruency=1.00; BF > 500. 
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Figure 5. Estimated DDM parameters across all participants. a. Drift rate by condition for three 

MBGR levels. MBGR was a continuous variable but trichotomized for illustration purposes. Shown 

are the estimated posterior distributions (with posterior means as points and corresponding 95% 

credible intervals as vertical bars) of the drift rates. b. Boundary separation by setting (i.e., blocks of 

games; see Methods). Shown are the estimated posterior distributions (with posterior means as points 

and corresponding 95% credible intervals as vertical bars) of the boundary separations. c. Starting point 

biases (for rounds 2 and 3) towards cooperation (values>0.5) or non-cooperation (values<0.5) by 

setting and prior outcome. Shown are the estimated posterior distributions (with posterior means as 

points and corresponding 95% credible intervals as vertical bars) of the starting point biases. 

 

 

Responses were equally cautious (and consistent) in prosocial and antisocial settings (i.e., 

blocks of games; see Methods) as indicated by the lack of change in posterior mean boundary 

separations across settings (Figure 5b). Participants had larger boundary separations for the first half of 

the task (blocks 1 & 2) than for the second half of the task (blocks 3 & 4) which could reflect training 

effects.  
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Setting and prior outcome both influenced the starting point, indicating bias toward cooperation 

or non-cooperation even before stimulus presentation (Figure 5c). In the first prosocial setting, 

participants were biased towards cooperation if their counterparts unexpectedly cooperated in the 

previous round. In the first antisocial setting, participants were biased towards non-cooperation if their 

counterparts unexpectedly non-cooperated in the previous round. To start, in the first setting, all 

responses (irrespective of the previous outcome) were biased towards cooperation. To the last setting, 

however, all responses were biased towards non-cooperation. 

Clinical groups differ in performance. In what follows, asterisks refer to group differences in 

model parameters (MP) based on Bayesian hypothesis tests and displayed in the respective figures. BF 

is the Bayes’ Factor with hypothesis H1:(MPADHD>MPcontrol) in the numerator and hypothesis 

H0:(MPADHD≤MPcontrol) in the denominator. PP is the posterior probability that MPADHD>MPcontrol. 

The ADHD group was more cooperative than the control group under no conflict (*1: BF=5.58, 

PP=0.85), medium strategic uncertainty (*2: BF=17.35, PP=0.95), and low incongruent incentives (*3: 

BF=5.24, PP=0.84; Figure 6a). They also had a 321ms (SD=139ms) slower mean RT than the control 

group when averaging over all responses and conditions [MRTADHD=2558ms; MRTcontrol=2237ms; PP 

that MRTADHD>MRTcontrol=1.00]. Under incongruent incentives, mean RTs of the control group became 

faster as conflict decreased (Figure 6b). The opposite relationship was found for the ADHD group. 

Group-specific differences in mean RTs were due to differences in the number of gaze fixations (Figure 

6c). The ADHD group fixated more on cooperation gains (rather than risks and costs) under 

incongruent incentives than did the control group (Figure 6d). 
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Figure 6. ADHD-specific group differences in performance. a. Frequency rates of cooperative 

choices by condition. Shown are the estimated marginal posterior distributions (with posterior means 

as points and corresponding 95% credible intervals as vertical bars) of the frequency rates from single-

trial logistic regression (see Methods). Asterisks refer to group-specific differences detailed in the text. 

b. Mean reaction times (in milliseconds; averaged by subjects) by group for cooperative choices (top 

panel), and non-cooperative choices (bottom panel) with vertical bars representing standard errors. c. 

Top panel: Average number of fixations per round (averaged by subject) by condition with vertical bars 

representing standard errors. Bottom panel: Average fixation duration per round (averaged by subject) 

by condition with vertical bars representing standard errors. d. Motivation-based gazing ratio by group 

and condition with vertical bars representing standard errors. 
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ADHD-specific differences in latent decision components. The ADHD group had larger drift 

rates under low incongruent incentives (*1: BF=10.45, PP=0.91; Figure 7a). This indicates more 

frequent and faster cooperative choices. Moreover, the ADHD group had larger boundary separations 

than the control group across all blocks (*1: BF=29.30, PP=0.97; *2: BF=6.26, PP=0.86; *3: BF=3.66, 

PP=0.79; *4: BF=6.70, PP=0.87; Figure 7b). This indicates more cautious response strategies, which 

led to longer (more skewed) RTs and more frequent cooperative choices.  

ADHD symptom severity explains individual differences. Higher ADHD symptom severity 

was associated with larger contextual changes in both boundary separation (Figure 7c) and starting 

points (Figure 7d). We also refer to Supplementary Figure S8 for a distribution of CAARS-LV scores 

across all participants.  
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Figure 7. Clinical differences in DDM parameters. a. Drift rates by condition and group (for 

motivation-based gazing ratio at grand average). Shown are the estimated posterior distributions (with 

posterior means as points and corresponding 95% credible intervals as vertical bars) of the drift rates. 

Asterisks refer to group-specific differences detailed in the text. b. Boundary separation by setting and 

group. The numbers in brackets of the x-axis labels refer to the order of presented blocks. Shown are 

the estimated posterior distributions (with posterior means as points and corresponding 95% credible 

intervals as vertical bars) of the boundary separations. Asterisks refer to group-specific differences 

detailed in the text. c. Relationship between mean change (absolute values) in boundary separation 

across settings and ADHD severity scores (T-scores from CAARS-LV). Mean change was calculated 

by averaging the change in boundary separation between two consecutive blocks. Shown are estimated 

posterior means (solid lines) and corresponding 95% credible intervals (shaded intervals). d. 
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Relationship between mean change in starting point bias (absolute difference between starting point 

and 0.5 which represents an unbiased starting point) to unbiased starting point of 0.5 in absolute values 

across settings and prior outcomes) and ADHD severity scores. Mean change was calculated by 

averaging the absolute differences across settings and prior outcomes. Shown are estimated posterior 

means (solid lines) and corresponding 95% credible intervals (shaded intervals). 

 

Discussion 

We used an integrated Bayesian hierarchical approach to examine how situational determinants 

(source and size of motivational conflict, prosociality of the setting), and participants’ past experience 

and cognitive characteristics shaped their cooperativeness. Developing a paradigm with games derived 

from game theory, we found that the source and magnitude of motivational conflict affected the speed 

and frequency of cooperative choices. The setting’s prosociality and participants’ past experience led 

to systematic biases in the decision-making process that were distinguishable with a process-oriented, 

computational model analysis. Integrating eye-tracking to measure motivation-based information 

processing during decisions, we found that participants’ cooperativeness was higher if they gazed more 

on the gains of cooperation rather than costs and risks. ADHD characteristics explained some individual 

differences in responsiveness across contexts. This highlights the clinical importance of studying 

social-cognitive reactivity with experimental paradigms. 

Cooperation across contexts 

Cooperative choices were faster than non-cooperative choices under congruent incentives, but 

slower under incongruent incentives. Focusing on other social behavior (e.g., altruistic giving, group-

dynamics in collective decisions), past research suggested that RTs are faster for choices that are more 

frequent (Capra et al., 2020; Krajbich et al., 2015). Our results do not support this hypothesis, 

suggesting that this view is too simplistic for understanding cooperation in these games. Under high 

strategic uncertainty, cooperative choices were less frequent but faster than non-cooperative choices 

(Figure 4). In the absence of motivational conflict, cooperative choices were more frequent and as fast 
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as non-cooperative choices. Hence, the source of motivational conflict (PD vs. SH games) determined 

the relative speed of cooperative choices.  

Our findings contribute to a century-long question about whether cooperation is instinctively 

ingrained in humans. In search for answers, prior studies either externally induced stress to evoke 

instinctive responses and/or they relied on RTs, linking decision speed to distinct mindsets (deliberation 

versus intuition) based on Kahneman’s dual-process theory (De Neys, 2021; Kahneman, 2011). Some 

studies (Evans & Rand, 2019; Kieslich & Hilbig, 2014; Rand, 2016; Rand et al., 2012; Rubinstein, 

2007) found that cooperative choices were faster than non-cooperative choices, while other studies 

(Capraro & Cococcioni, 2016; Grossmann et al., 2017; Lohse, 2016) found the opposite. Our results 

suggest that considering the source of motivational conflict might help to reconcile this mixed evidence. 

Attentional and cognitive aspects of cooperation 

Combining eye-tracking with cooperation games, we found that participants’ cooperativeness 

could be predicted by how much they looked at the gains rather than risks and costs of cooperation. 

Moreover, the extent to which people looked at cooperation gains varied according to the source and 

size of conflict (Figure 6d). This interaction supports the idea that distinct patterns of information 

processing guide subsequent choices (Capra et al., 2020; Chen & Fischbacher, 2016; Chen & Krajbich, 

2018; Jiang et al., 2016; Stewart et al., 2016; van Baar et al., 2022). Compared to other studies though, 

we focused on how participants’ cooperativeness changed across contexts using both PD and SH 

games.  

The DDM (Ratcliff, 1978) analysis decomposed the latent decision-making process into 

quantifiable mental components with established psychological interpretations. Each parameter 

represents a channel through which situational determinants could influence the decision-making 

process. This analysis showed that different conflict sources biased the acquisition of information (how 
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much information people gather about cooperation gain versus risks and costs), determining decision 

difficulty as captured by drift rate (Figure 5a).  

Past studies have demonstrated that participants’ beliefs about others’ intentions and actions 

influence their prosocial choices (Castro Santa et al., 2018; Ging-Jehli et al., 2020; van Baar et al., 

2022), and that people’s cooperativeness is a dynamic process that depends on recent experiences 

(Capraro & Cococcioni, 2015; Nishi et al., 2016). However, the relative importance of the setting and 

past experiences remained unclear. Our results showed that the prosociality of the setting and previous 

outcomes affected people’s decision-making process by influencing the starting point of decision 

processes (Figure 5c). In the first prosocial setting, participants were biased towards cooperation 

regardless of the prior outcome, indicating an optimistic belief about others (Ging-Jehli et al., 2020; 

Lerner, 1980). These positive biases then turned into negative biases when participants were exposed 

to antisocial settings. When they subsequently experienced unexpectedly cooperative counterparts, 

their cooperativeness increased. However, counterparts’ unexpected non-cooperation influenced 

participants’ subsequent cooperativeness more strongly than counterparts’ unexpected cooperation. 

Our analytical approach provides avenues for future research to disentangle different situational and 

individual determinants of cooperation.  

Clinical implications 

Our work promotes the use of game-theoretical paradigms as a tool for studying clinical social-

cognitive characteristics. Compared to the control group, the ADHD group increased cooperation more 

when the benefits of cooperation increased (Figure 6a). This effect was mediated by more visual 

attention to cooperation gains rather than risks/costs (Figure 6d). Moreover, the ADHD group 

accommodated a more cautious response strategy (larger boundary separation across all blocks) than 

the control group. This might seem counter-intuitive at first since ADHD has been commonly 
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associated with less cautious responses (see for a review: Ging-Jehli et al., 2021). However, most 

studies have used (neuro)cognitive tests where participants’ outcomes did not critically depend on their 

interactions with others. Considering that individuals with ADHD have more difficulties in developing 

and maintaining social relationships (Hoza et al., 2005; Landau & Moore, 1991) and a higher propensity 

for being peer rejected (Craig et al., 2017; Nijmeijer et al., 2008; Uekermann et al., 2010), it seems 

plausible that they apply more caution when deciding whether to cooperate with counterparts.  

The process-oriented analysis with the DDM showed that higher ADHD severity was associated 

with larger parameter changes across contexts. Hence, reactivity to changes, an important ADHD 

characteristic noted in a recent review on neurocognitive testing (Ging-Jehli et al., 2021) is quantifiable 

with our integrative approach. This reactivity to changes became increasingly important at higher 

severity of ADHD symptoms. Previous studies have examined social-cognitive characteristics of 

ADHD using primarily emotion recognition tasks or tasks with hypothetically described social 

problems (Ma et al., 2017; Nijmeijer et al., 2008; Uekermann et al., 2010). None of these studies 

involved social interactions (participants’ outcomes were not affected by others’ choices). Mentalizing 

about others’ hypothetical actions might not be the same as making consequential choices based on 

others’ actual choices. Hence, game theoretical derived tasks provide avenues to experimentally study 

systems for social processes such as cooperation and over-reactivity; characteristics that have not been 

experimentally studied in clinical populations.   

Neuroscientific implications 

Using sequential sampling models, together with game theoretical paradigms, provide great 

potential to dissociate the role of distinct striatal mechanisms involved in value-based decision-making. 

For instance, it is known that phasic activity in midbrain dopamine neurons encode prediction errors 

and information about subjective values of presented options (Frank, 2016; Glimcher & Fehr, 2013). 



COOPERATION ACROSS CONTEXTS  41 

 

Moreover, cortico-striatal interactions mediate belief updating and adaptive behavior (Westbrook et al., 

2021). However, how these neural subprocesses interact to produce behavior has yet to be examined. 

Process-oriented sequential sampling models can help to formalize this examination because behavior 

can be decomposed into distinct psychological components (Forstmann et al., 2016; Ging-Jehli et al., 

2021; Pedersen et al., 2021). These computational components can then be associated with neural 

components that express distinct spatiotemporal dynamics.  

In our study, prior experience affected behavior through the model parameter (i.e., 

psychological channel) starting point bias. Past studies (Rilling et al., 2002, 2008) found greater 

activity in caudate and nucleus accumbens after mutual cooperation than unreciprocated cooperation 

in a PD game. We would therefore expect that greater activity in caudate and nucleus accumbens would 

be associated with larger starting point biases. Moreover, by recording striatal activity during task 

performance, future studies could separate the neural subcomponent associated with social prediction 

errors (i.e., integrating information from prior experience hypothesized to affect starting point bias) 

from that associated with model parameter drift rate (i.e., integrating information about reward and 

opportunity costs presented in the payoff matrix).  

We found that the source of motivational conflict affected behavior through the model 

parameter drift rates. It is known that phasic activity in midbrain dopamine neurons encode information 

about subjective values of presented options, among others (Glimcher & Fehr, 2013). Moreover, 

different dynamics of tonic dopaminergic activity has been proposed to signal opportunity costs (Frank, 

2016). The use of different game structures, all designed for the study of cooperation, allows one to 

examine how dynamical neural responses change as motivational trade-offs and opportunity costs 

systematically change across different game structures (while keeping constant the perceptual object 

presented to participants). Lastly, since SH games incentivize participants to form an accurate belief 
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about their counterpart to select the optimal response, other considerations are present in the PD games 

that involve fear of exploitation and greed. Neural differences between SH and PD games could be 

used to examine how different affects (greed, fear) bias the belief formation process during decision-

making.  

Summary and future directions 

This study showed how an integrative approach composed of eye-tracking, computational 

modeling, and a new experimental paradigm provided insights for the underlying psychological 

processes that lead to cooperation in social strategic interactions. We further illustrated the importance 

of studying clinical characteristics associated with ADHD in simulated strategic interactions 

(characterized by the fact that participants’ outcomes not only depended on their own actions but also 

on their counterparts’ actions). Our study also contributed to a century-long question about whether 

cooperation is instinctively ingrained in humans. Specifically, we showed that the source and 

magnitude of motivational conflict affected the relative speed and frequency of cooperative versus non-

cooperative choices. The prosociality of a setting and participants’ past experience led to distinct biases 

in their decision-making process. Moreover, cooperativeness was higher if participants gazed more on 

the gains of cooperation rather than costs and risks. 

Our findings have at least four implications for the design of incentive structures for promoting 

cooperative interactions (at least with artificial agents). First, reducing strategic uncertainty in first 

encounters is important as it determines whether people incorporate unrelated past outcomes when 

deciding whether to cooperate. Second, the setting has lasting effects so that participants are less 

cooperative in antisocial settings even if their counterparts previously demonstrated their 

cooperativeness. Third, the setting’s prosociality and prior outcomes interactively affect decisions. 

Specifically, unexpected cooperation by others in prosocial settings (or unexpected non-cooperation by 
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others in antisocial settings) induces initial biases (indexed by the DDM parameter starting point) to 

reciprocate that behavior. Increasing the latency of decisions (e.g., introducing waiting time or 

decreasing urgency signals for fast responding) mitigate the effects of starting point biases which can 

therefore lead to less or more cooperation (depending on the setting). Fourth, how past experiences 

shape future actions depends on characteristics associated with ADHD; as well as on the size and source 

of motivational conflict. 

Future research is needed to address current limitations of this study. For instance, the DDM 

provided a good account for the data, but other models could do so as well. We found that over-

reactivity, as quantified by the larger change in model parameters across contexts, was more prevalent 

for participants with higher ADHD severity scores. While we would expect rational agents to 

incorporate past outcomes into their decision-making process, ADHD was associated with extensive 

generalization based on past outcomes. Future studies are needed to replicate these results, investigating 

also whether these pronounced parameter changes are linked to stronger emotional responses. 

Moreover, while we operationalized over-reactivity as a task-evoked response, future research could 

also consider integrating mood into the working definition of over-reactivity. Our approach could be 

used as a training tool to teach individuals how to downregulate reactivity to others’ responses, or how 

to incorporate other-regarding concerns into one’s own decisions. Moreover, we found that distinct 

gaze patterns during information processing (i.e., before the decisions), predicted participants’ 

cooperative choices. It remains to be answered whether these distinct gaze patterns are a consequence 

or a cause of cooperative choices. Future studies could examine this relationship closer by 

systematically manipulating information processing dynamics during decision-making. Lastly, this 

study focused on younger adults (aged 18 to 35) and future research is needed to generalize our results 

for a broader population of individuals with ADHD. For instance, evidence suggests that individuals 
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with ADHD are more likely to drop out of school (Barbaresi et al., 2007; Fried et al., 2016; Mirza et 

al., 2018) or experience negative academic outcomes (Arnold et al., 2020). Some studies also suggest 

that ADHD is associated with lower intelligence scores (Kuntsi et al., 2004; Voigt et al., 2006) albeit 

evidence remains mixed (Jepsen et al., 2009; Wood et al., 2011). Although participants in the present 

study involved individuals from a broad range of ADHD symptom severities, they were also 

characterized by intelligence scores above the average and a higher number of years of education. These 

demographic characteristics make it challenging to generalize our findings to the broader ADHD 

population. Especially, our sample may not be representative of the cognitive characteristics found in 

those with lower intelligence scores or who have had fewer educational opportunities. It could be that 

individuals with ADHD and co-morbid intellectual disabilities and/or fewer educational opportunities 

show stronger effects in the discussed findings. Alternatively, it could also be that they demonstrate 

additional qualitative differences (e.g., task strategies) compared to this participant pool. Future studies 

might examine a more heterogenous sample to assess the extent and nature of potential specific effects 

to this study sample. 
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