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Abstract  

Background: Exploring whether cognitive components (identified by baseline cognitive testing 

and computational modeling) moderate clinical outcome of neurofeedback (NF) for attention-

deficit hyperactivity disorder (ADHD). Method: 142 children (aged 7-10) with ADHD were 

randomly assigned to either NF (n=84) or control treatment (n=58) in a double-blind clinical trial 

(NCT02251743). The NF group received live, self-controlled downtraining of 

electroencephalographic theta/beta ratio power. The control group received identical-appearing 

reinforcement from pre-recorded electroencephalograms from other children. 133 (78 NF, 55 

control) children had cognitive processing measured at baseline with the Integrated Visual and 

Auditory Continuous Performance Test (IVA2-CPT) and were included in this analysis. A 

diffusion decision model applied to the IVA2-CPT data quantified two latent cognitive 

components deficient in ADHD: drift rate and drift bias, indexing efficiency and context sensitivity 

of cognitive processes involving information integration. We explored whether these cognitive 

components moderated the improvement in parent- and teacher-rated inattention symptoms from 

baseline to treatment end (primary clinical outcome). Results: Baseline cognitive components 

reflecting information integration (drift rate, drift bias) moderated improvement in inattention due 

to NF vs. control treatment (p=0.006). Specifically, those with either the most or least severe 

deficits in these components showed more improvement in parent- and teacher-rated inattention 

when assigned to NF (Cohen’s d=0.59) than when assigned to control (Cohen’s d=-0.21).  

Conclusions: Pre-treatment cognitive testing with computational modeling identified children 

who benefitted more from neurofeedback than control treatment for ADHD.  

Keywords: ADHD, moderators neurofeedback, computational psychiatry, personalizing 

medicine; RDoC implementation; diffusion decision model 



COGNITIVE MODERATORS OF NEUROFEEDBACK 3 

Introduction 

Computational Psychiatry offers novel tools for pursuing a long-held goal in medicine: to 

personalize treatments (Fountoulakis & Stahl, 2020; Ging-Jehli, Ratcliff, et al., 2021; Hitchcock 

et al., 2022; Huys, 2018). We provide empirical evidence on how a theory-driven explanatory 

computational model of decision-making (the diffusion decision model; Ratcliff, 1978) can help 

to match response to a clinical intervention for attention-deficit hyperactivity disorder (ADHD) 

with specific cognitive characteristics.  

The Neurofeedback Collaborative Group (Arnold et al., 2021) assessed the efficacy of 

neurofeedback (NF) for childhood ADHD in the first large randomized double-blind sham-

controlled clinical trial (the International Collaborative ADHD Neurofeedback [ICAN] study). 

They found no statistically significant difference overall between neurofeedback (NF) and control 

treatment. This result might suggest no differential effectiveness for all children with ADHD. 

However, it might also mask individual differences in treatment effectiveness, some responding 

better to NF and others to control treatment, thus cancelling each other out. Therefore, the ICAN 

study provides an opportunity to examine the following question: can pre-treatment cognitive 

testing and computational modeling detect latent cognitive components that identify children who 

benefit from NF? 

Cognitive components as treatment moderators 

Most studies have focused mainly on demographics and symptom characteristics (e.g., 

DSM-defined presentations, (American Psychiatric Association [APA], 2013); comorbidity 

profiles) to identify factors predicting or moderating treatment effectiveness (APA, 2013; Arnold 

et al., 2003; Chronis-Tuscano et al., 2017; Hinshaw, 2007; Kraemer et al., 2002; Owens et al., 

2003; Swanson et al., 2001). All moderators of treatment outcome identify for whom the treatment 
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is best suited (Wallace et al., 2013). Some are non-modifiable and can serve only that purpose. 

Others (e.g., comorbidity, symptom profiles) may also suggest possible subtypes of the condition 

or targets of new interventions, providing implications for both diagnosis and treatment. Cognitive 

characteristics of ADHD may serve any or all such purposes. There is scant evidence on whether 

cognitive characteristics of ADHD could be used to understand who responds well (or poorly) to 

NF. Computational modeling quantifies underlying neuropsychological components of cognitive 

processing; see for a review: (Ging-Jehli, Ratcliff, et al., 2021). It is a promising tool to quantify 

cognitive moderators of NF since NF targets the “rewiring” of latent cognitive brain processes (by 

operant conditioning) and one may therefore speculate that the effectiveness of NF depends on 

participants’ cognitive abilities before the start of the intervention.  

Potential benefits and mechanisms of neurofeedback on cognitive functioning 

The NF group received live, self-controlled downtraining of electroencephalographic 

theta/beta power ratio. Past research has showed that ADHD is typically associated with higher 

theta-beta ratio (Arns et al., 2012, 2013; Gevensleben et al., 2009; Janssen et al., 2016; J. F. Lubar 

& Shouse, 1976; J. O. Lubar & Lubar, 1984; Monastra et al., 2002). It is presumed that the 

imbalance in these power frequency bands could be the underlying source of inattention and 

hyperactivity-impulsivity and it is therefore a common target for NF intervention for ADHD (Arns 

et al., 2013; Cortese et al., 2016; Geladé et al., 2016, 2018; Gevensleben et al., 2009, 2010; Van 

Doren et al., 2019). In NF interventions, individuals receive real-time feedback in the form of 

visual presentation of their momentary theta and beta power, with coaching and visual and auditory 

positive reinforcement. When theta and beta levels reach target thresholds patients simultaneously 

see their brain activity on the computer, earn points in an otherwise boring video game, and hear 

the computer beep. Over time with practice, they learn to control brain activity patterns, presumed 

to influence their behavior. In that sense, NF can be seen as a reinforcement learning paradigm.  
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Some researchers have already speculated that initial cognitive ability could moderate 

outcomes of psychosocial therapies (Arns et al., 2012, 2013; Gevensleben et al., 2009; Wallace et 

al., 2013). Two distinguishable hypotheses have emerged about the moderating role of initial 

cognitive ability on therapy response (Karbach et al., 2017; Lövdén et al., 2012). The magnification 

account proposes that individuals with high cognitive abilities will benefit from psychosocial 

interventions because they have the cognitive resources to learn strategies and skills acquired 

through cognitive training. Conversely, the compensation account proposes that individuals with 

low cognitive abilities will benefit from psychosocial interventions because they have the room 

for improvement. Both accounts seem plausible and to our knowledge their relative importance in 

NF treatment is unknown. A few studies have explored cognitive characteristics as moderators of 

non-NF psychosocial treatments (Fosco et al., 2018; van der Donk et al., 2020). For instance, Van 

der Donk et al. (2020) examined whether initial test scores on working memory (WM) tasks 

moderated outcome of two different cognitive trainings (neither involving NF). They found that 

higher baseline WM test scores were associated with better performance at the end of the 

intervention on cognitive tasks related to the intervention. We extend the extant research by 

addressing whether initial cognitive profiles (assessed with a CPT unrelated to the clinical 

intervention) moderate outcomes of broader clinical measures (i.e., change in parent- and teacher-

rated inattention severity) and by using computational modeling.  

The importance of decomposing measures into cognitive components 

The lack of research on cognitive characteristics as potential moderators of treatment 

outcomes may be due to the difficulty of decomposing performance on cognitive tasks into 

components that are quantifiable yet psychologically interpretable. When evaluating the 

moderating role of cognitive abilities on treatment response (particularly if treatment response is 

measured by transfer measures such as daily functioning or symptom severity), only some specific 
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latent cognitive components (rather than cognitive ability in general) may be clinically impaired 

and relevant for the effectiveness of the treatment. Thus, conventional summary statistics of 

cognitive task performance (e.g., mean reaction times [RTs] and/or accuracy) are not sensitive 

measures for studying the moderating role of cognitive characteristics because they aggregate 

many concepts (e.g., processing speed, quality of perceptual encoding, motivational factors) into 

one measure, lacking a clear interpretation of what they mean (Ging-Jehli, Ratcliff, et al., 2021). 

Instead, computational modeling (particularly sequential sampling models such as the diffusion 

decision model; (Ratcliff, 1978) decomposes performance into distinct components that are 

separately examinable. These latent components are psychologically interpretable due to their 

extensive study in various research fields (clinical science: (Ging-Jehli, Ratcliff, et al., 2021; 

Hitchcock et al., 2022); cognitive neuroscience: Forstmann et al., 2016; ADHD research: (Ging-

Jehli, Ratcliff, et al., 2021; Ging-Jehli, Arnold, et al., 2022). Moreover, computational model 

parameters are often better predictors of individual differences (Ging-Jehli, Arnold, et al., 2022; 

Ratcliff et al., 2010); and initial evidence from schizophrenia research (Geana et al., 2021) suggests 

that these parameters can also help to identify who benefits from a clinical intervention. 

Cognitive components estimated by diffusion decision modeling 

The diffusion decision model (DDM; Ratcliff, 1978) allows decomposing task performance 

– accuracy values and reaction time (RT) distributions – into cognitive components that can be 

separately studied to map different clinical characteristics onto distinct components. The cognitive 

components, resembling an individual’s entire decision-making process, can be summarized as 

follows (a detailed discussion can be found in: Forstmann et al., 2016; Ging-Jehli, Ratcliff, et al., 

2021; Wiecki et al., 2015): Drift rate (v) indexes the efficiency of cognitive processes involved in 

integrating information from presented stimuli. Typically, accurate and fast decisions are 

associated with large drift rates. Drift bias (cv) indexes biases in the information integration process 
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if stimulus types differ in their reward rates or relative appearance. Previous studies have shown 

that drift bias is a commonly neglected DDM parameter that deserves more attention (Kloosterman 

et al., 2019; Starns et al., 2012); particularly in neurocognitive studies for ADHD given that the 

relative frequency of target stimuli are manipulated across blocks of the same cognitive test (Ging-

Jehli, Ratcliff, et al., 2021; Ging-Jehli, Arnold, et al., 2022). We provide more explanation of drift 

bias in the context of this task in the Method section. Boundary separation (a) indexes general 

response cautiousness (speed-accuracy trade-off). Nondecision time (Ter) indexes latency of 

processes involved in stimulus encoding and response execution. Starting point (z) indexes initial 

bias (a priori temptation) for a response.  

The DDM has successfully accounted for the performance from a variety of tasks 

(including one-choice continuous performance tests) for a wide range of clinical disorders, such 

as ADHD, autism, depression, anxiety, and others (Ging-Jehli, Arnold, et al., 2022; Pe et al., 2013; 

Pirrone et al., 2020; White et al., 2010). For instance, Ging-Jehli, Ratcliff, et al. (2021) summarized 

the cognitive characteristics of ADHD by reviewing over 50 studies across a range of different 

cognitive tasks meant to tap into concepts such as sustained attention, time perception, 

distractibility, and inhibition failures. They showed that applications of computational models to 

cognitive tasks (computational psychiatry) can provide more information about the underlying 

latent cognitive components as opposed to summary statistics (e.g., test scores, mean RTs, 

accuracy) because parameters are estimated by simultaneously considering the shape of the entire 

RT distribution for correct responses and errors (see Forstmann et al., 2016; Ging-Jehli, Ratcliff, 

et al., 2021 for detailed discussion). Recently, Weigard and Sripada (2021) found evidence across 

multiple studies that drift rate (v) could potentially serve as an important indicator for quantifying 

individual differences and their risks for developing clinical disorders such as ADHD.  
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Some studies that conducted DDM analyses in the field of ADHD research have led to a 

reinterpretation of longstanding beliefs. For instance, it has long been presumed that individuals 

with ADHD would benefit from a context with increased task engagement (i.e., shortening the rate 

at which new information is presented). This is because RTs have been shorter in those contexts 

as opposed to contexts with decreased task engagement (i.e., lengthening the rate at which new 

information is presented – see for a review: Ging-Jehli, Ratcliff, et al., 2021). Using a DDM 

analysis, Huang-Pollock et al. (2017) could not show that increases in task engagement improved 

the efficiency of components involved in information processing (indexed by drift rate). Instead, 

increases of the proportion of premature decisions (indexed by starting point) accounted for shorter 

RTs with increased task engagement.  

Present Study 

We discussed above the few studies that examined whether cognitive measures at baseline 

moderated treatment outcomes. However, these studies were unrelated to ADHD research, focused 

on conventional performance measures from cognitive tasks, and how those measures moderated 

near transfer measures (i.e., performance in related cognitive tasks). We extend that work by 

addressing whether baseline cognitive processing (indexed by the DDM parameters: drift rate and 

drift bias) moderated the effect of NF on the primary ICAN therapeutic outcome (improvement in 

the composite parent- and teacher-rated inattention score from baseline to end-treatment).  

We hypothesized that the cognitive components involved in information integration (drift 

rate, drift bias) were the ones that moderated treatment response in this study. This is because 

many studies found that children with ADHD showed consistently lower drift rates (v) and larger 

variation in drift bias (cv) compared to children without ADHD across a range of different cognitive 

tasks (see for a review: Ging-Jehli, Ratcliff, et al., 2021; see also: Huang-Pollock et al., 2017, 



COGNITIVE MODERATORS OF NEUROFEEDBACK 9 

2020; Mowinckel et al., 2015; Shapiro & Huang-Pollock, 2019; Weigard & Huang-Pollock, 2014; 

Weigard & Sripada, 2021). Supplemental Figure S1 shows replication of this finding for this 

sample.  Our study is unique in that we use a computational modeling approach, important because 

only a particular set of underlying cognitive components may be relevant for NF to be effective 

(see also Geana et al., 2021). 

Methods 

This research was approved by [masked for review] Institutional Review Board, and 

written informed assent and consent were obtained from children and parents/guardians 

(submission date of clinical trial NCT02251743 to registry: 17/09/14; recruitment start of 

participants: 26/09/14). 

Participants in ICAN study 

142 children (aged 7-10) participated in a randomized clinical trial (Arnold et al., 2021). 

133 children completed the IVA2-CPT cognitive task at baseline (for flow diagram of RCT: 

Supplemental Figure S4).  

Children were randomly assigned to either NF, receiving actual NF training with deliberate 

reinforcement of theta (4-8 Hz) amplitude decrease and beta (12-21 Hz) amplitude increase, or 

control treatment, receiving reinforcement based on pre-recorded third-party 

electroencephalograms [EEGs]. The CONSORT checklist is listed in Supplemental Table S1. 

Inclusion criteria required children to: be diagnosed with ADHD based on the Children’s Interview 

for Psychiatric Syndromes (ChIPS); have both parent- and teacher-rated T scores on DSM 

inattention symptoms of at least 65; achieve an IQ score of at least 80 on the Wechsler Abbreviated 

Scale of Intelligence (WASI; Wechsler, 1999); and have an EEG theta-beta ratio (TBR) of at least 
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4.51. Children were required to withdraw from any ADHD medication five days prior to each 

major assessment.  

Measures 

Children’s Interview for Psychiatric Syndromes (ChIPS; Weller et al., 1999) This 

structured diagnostic interview was used by doctoral-level clinicians to diagnose common DSM-

5 (APA, 2013) mental-health disorders.  

Conners-3rd edition Rating Scale (C-3; Conners, 2008) Parents and teachers assessed 

children’s symptoms at baseline, mid-treatment and end-treatment. This measure included 108 

questions (10 related to inattentiveness and 11 related to hyperactivity-impulsivity) with ratings 

on each ranging from 0 (no problem) to 3 (severe problems). Item means could range from 0 to 3, 

while sex- and age-normed T-scores could range from 25 to 90.  

Demographics. Parents initially answered a demographic questionnaire to describe the 

population sampled and to compare the sample characteristics by treatment groups (Table 1).  

The Integrated Visual and Auditory Continuous Performance Test (IVA2-CPT; 

Sandford & Turner, 2000) The IVA2-CPT is a computerized task, including 500 trials. On each 

trial, the number 1 or 2 is presented either visually or auditorily over headphones. Participants are 

instructed to respond to “1” with key presses (go trials) and NOT to respond to “2” (no-go trials). 

RTs and responses (go/no-go) are recorded for each trial. Additional details are in the Supplement. 

Primary treatment outcome.  The ICAN study’s (Arnold et al., 2021) primary outcome 

was the improvement (decrease) of inattention from baseline to treatment end (denoted as ΔAN = 

 
1 TBR neurofeedback is considered a standard protocol of NF for ADHD (Arnold et al., 2021). Children were required 

to have a high TBR since past studies showed that those with high TBR would benefit particularly from TBR-lowering 

neurofeedback (Arns et al., 2012; Monastra et al., 2002).  
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ΔANend-treatment – ΔANBL). More positive values represent more improvement. We calculated a 

composite score by averaging the item-mean parents’ and teachers’ ratings (from the Conners3 

Rating Scale; Conners, 2008) at each assessment point. Parents and teachers were blinded to all 

cognitive testing and treatment condition. 

Drift rate and drift bias as moderators 

We focused on DDM parameters (v, cv, and their combination) which have been shown 

across studies to be aberrant in ADHD (see also Supplemental Figure S1; Ging-Jehli, Arnold, et 

al., 2022; Ging-Jehli, Ratcliff, et al., 2021; C. Huang-Pollock et al., 2017, 2020; Shapiro & Huang-

Pollock, 2019; Weigard & Huang-Pollock, 2014). Drift rate (v) and drift bias (cv) were averaged 

across CPT conditions. The larger v, the better (i.e., faster and more accurate) is information 

processing. Hence, v is commonly used to index the general efficiency of processes associated 

with integrating stimulus information. Moreover, the IVA2-CPT represents a go/no-go task so that 

participants who are continuously responding “Go” to trials accomplish high accuracy on go trials 

(large drift rates for go trials) but low accuracy on no-go trials (low drift rates for no-go trials). To 

account for this, we calculated the difference in drift rates between go and no-go trials, commonly 

referred to as drift bias (cv)
2. The larger cv, the more information processing is dependent upon the 

stimulus type. Hence, cv is used to index the context sensitivity of information integration 

(sensitivity to go versus no-go trials), following the practice of past research (Ging-Jehli, Arnold, 

et al., 2021). Positive values of cv index higher propensity for “Go” responses, while negative 

values of cv index higher propensity for “No-Go” responses (with cv equal to zero representing the 

 
2 Drift rates for go trials are commonly positive due to their association with the upper response threshold of the DDM. 

Instead, drift rates for no-go trials are commonly negative due to their association with the lower response threshold 

of the DDM. To calculate v, we first multiplied all drift rates for no-go trials by minus one, and then averaged drift 

rates for go and no-go trials across all task conditions, obtaining one v measure per participant. To calculate cv, we 

first multiplied all drift rates for no-go trials by minus one, and then calculated the difference between drift rates for 

go trials and those for no-go trials for each condition. We then averaged these differences across task conditions, 

obtaining one cv measure per participant. 
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balanced level). Participants who persistently press response keys on most trials achieve a high v 

(due to high accuracy on go trials pulling their average up) but also a higher positive cv (due to 

lower accuracy on no-go trials and therefore lower absolute values for drift rates for no-go trials). 

This compared to those who make more deliberate choices (high v and cv close to zero); or those 

who are off-task (e.g., mind wandering), not responding (high v due to high accuracy on no-go 

trials and higher negative cv). Therefore, the two components, v and cv, are both involved in 

information integration, but they tap into different cognitive constructs (see for discussions: Ging-

Jehli, Ratcliff, et al., 2021; Kloosterman et al., 2019; Starns et al., 2012; for this study, this is 

reflected in a low correlation between v and cv: r=-0.069, p=0.427). 

Data analytic plan 

Estimating neurocognitive moderators 

The DDM has been successfully applied to many variants of CPTs and other one-choice 

tasks (Ging-Jehli, Ratcliff, et al., 2021; Ging-Jehli, Arnold, et al., 2022; Huang-Pollock et al., 

2012; 2020; Weigard & Sripada, 2021). Following the analytical approach of past research, the 

DDM was fitted to the cognitive data of each child by using a standard chi-square minimization 

routine to find optimal parameter values (Ratcliff et al., 2018; Ratcliff & Tuerlinckx, 2002). See 

Supplement for model specification. Supplemental Table S2 shows the mean chi-square goodness 

of fit values, demonstrating good model fit. Supplemental Figure S2 illustrates that the predicted 

neurocognitive behavioral data (predicted accuracy rates and common RT quantiles) closely 

resembled the actual data, supporting that the model fit the data well.  

Primary Moderator analysis: testing for the existence of moderation 

We examined whether mean-centered drift rate (v) and drift bias (cv), and their interaction 

estimated from baseline data, moderate the effect of NF versus control treatment on the inattention 
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improvement. To test the existence of a moderation, we relied on the PROCESS modeling tool 

(Hayes, 2013) for moderator/mediator analysis in IBM SPSS (IBM Corp., 2020). 

Follow-up analysis: creating moderator scores informative for treatment selection 

The moderator analysis described above tests whether the cognitive components represent 

a statistically significant moderation. From a clinical perspective, it is further important to examine 

whether a patient’s baseline cognitive profile can be used to determine which treatment will be 

optimally suited for them. We implemented Kraemer and colleagues’ (Kraemer, 2013; Wallace et 

al., 2013) established moderator method that has been developed for this purpose. Specifically, we 

used the software R (R Core Team, 2017) to implement their algorithm, whose steps can be 

summarized as follows:  

Step 1: estimating a moderator score (M) for each child.  The moderator score represents 

a weighted average of the cognitive components (included in the primary moderator analysis) 

based on their relative importance for explaining the moderating effect (i.e., relative contribution 

to the combined moderator). Each child who received  NF (NF treatment group) was first paired 

with each child who received control treatment (SH treatment group). This provides for each pair 

their difference in the primary outcome (DO): 𝐷𝑂 =  ∆𝐴𝑁𝑁𝐹 −  ∆𝐴𝑁𝑆𝐻; with ΔAN representing 

the change in composite inattention rating from baseline to end of treatment. For each pair, we 

also computed the average of their two drift rates (Øv); the average of their two drift biases (Øcv), 

and their interaction (Øv by Øcv). Next, we performed a multiple linear regression analysis of DO 

(dependent variable) on Øv, Øcv, and Øv by Øcv (explanatory variables) for the whole sample. 

This provided us with regression coefficients that represented the relative importance of each 

cognitive component (Table 3). We then applied these regression coefficients to each child’s set 

of cognitive components (v, cv, v by cv). To obtain a single moderator score (M) for each child, we 
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multiplied each cognitive component by its estimated weight (i.e., coefficient) and then added 

them together. Theoretical justifications and additional methodological details can be found in 

Kraemer (2013).  

Step 2: Obtaining critical moderation range and cutoff value (M*) for treatment selection.  

For this step, we calculated the strength with which each moderator score (M) moderated the effect 

of treatment on the outcome (DO). This is done by running a separate linear regression for the 

treatment groups NF and SH, respectively. In this regression, the primary outcome variable 

(∆𝐴𝑁𝑁𝐹 or ∆𝐴𝑁𝑆𝐻) served as the dependent variable and the moderator score (M) served as the 

explanatory variable. This allows one to assess how the treatment effect size changes depending 

on a child’s moderator score (Figure 1). 

Results 

Baseline cognitive components moderated RCT primary outcome (primary result) 

Table 1 summarizes the sample characteristics of the two treatment groups, showing that 

they were well-matched at baseline. Table 2 shows the results of the primary moderator analysis: 

the interaction between drift rate and drift bias (Trt by v by cv) moderated the effect of treatment 

on improvement of inattention (β=-13.18; p=0.006).  The moderating effects of (Trt by v) or of 

(Trt by cv) separately were not statistically significant.  

Integrative moderator scores (based on cognitive components) provide critical range for 

treatment selection (results from follow-up analysis) 

Table 3 summarizes the weights for all individual variables that were used to calculate the 

moderator scores (detailed in Method section: Follow-up analysis). This allowed us to distinguish 

those who preferably responded better to NF (referred to as moderator group: NF+) and those who 

did not preferably respond to NF (referred to as moderator group: NF-). Table 3 shows that the 
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two cognitive components, cv and cv-by-v interaction, contributed the most to the combined 

moderator score (M). 

Figure 1 visualizes the moderation, showing a different treatment preference for children 

above and below a certain moderator score (M*). The grey vertical lines on each side demarcate 

the 5th and 95th percentile of all observed moderator scores. The slopes show the predicted 

improvements in primary outcome by each treatment group. The predicted regression lines for 

each treatment cross at a value of M* = -0.004, which is well within the observed range. For a 

moderator score below M*, the predicted outcome for control treatment was better than for NF. 

For moderator scores above M*, the predicted outcome for NF was better than for control 

treatment.  

We then sub-grouped children based on whether their moderator score was below or above 

the cutoff M* and estimated the treatment effect size in each group. The treatment effect size 

(Cohen’s d) for the children with a score below M* (ntotal = 91; nNF = 56, nSH = 35) was -0.28, 

indicating that control treatment was preferable to NF. The treatment effect size (Cohen’s d) for 

the children with a score above M* (ntotal = 42; nNF = 22, nSH = 20) was 0.32, indicating that NF 

was preferable to control treatment. Figure 2a illustrates these results graphically. It may be 

tempting, but statistically inappropriate, to compare treatment types (NF versus control treatment) 

between moderator groups (NF+ versus NF-) in Figure 2a (i.e., comparison between black lines 

and grey lines). What matters is the comparison between treatment type (NF versus control 

treatment) within each moderator group. Specifically, there is a negative difference between 

control treatment and NF in the NF- group; while in the NF+ group, there is a positive difference. 

Note that it is well-established that comparing treatment types (i.e., NF versus control treatment) 
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across moderator groups (i.e., NF-, NF+) does not reveal any information about treatment effect 

since all sorts of statistical artifacts influence the response within a treatment group. 

Characterizing moderator profiles for further studies 

Table 3 summarizes the baseline characteristics of the two moderator groups (also referred 

to as moderator profiles; see Hinshaw, 2007; Wallace et al., 2013). As proposed by Wallace et al. 

(2013), we focused on descriptive statistics and do not provide any hypotheses tests for group-

specific differences since all children were randomly assigned to a treatment at baseline. Moreover, 

our results are exploratory, requiring additional validation (e.g., optimal cutoffs for the moderator 

scores). However, the two moderator groups differed in IQ, with the NF+ moderator group having 

a 7-points lower mean score. The proportion of DSM-5 combined presentations (ADHD-

Combined, relative to ADHD-Inattentive) was more than twice as large in the NF+ moderator 

group. Finally, 34% of the NF+ moderator group had no comorbid diagnosis at baseline compared 

to 28% of the NF– moderator group. Characterizing the moderator groups in terms of their 

cognitive components, Figure 2b shows that the NF+ moderator group had either lower drift rates 

(v) and more positive drift biases (cv); or higher drift rates (v) and more negative drift biases (cv). 

In comparison, the NF- moderator group had more balanced values of v and cv. This result is 

consistent with the high importance weight assigned to the v by cv term shown in Table 3. 

Discussion 

Matching interventions such as NF based on cognitive characteristics is an important step 

toward implementing precision medicine (National Institute of Mental Health., n.d.). 

Computational modeling seems promising because its parameters (i.e., latent components) are 

often better predictors of individual differences than conventional performance measures (Ging-

Jehli, Arnold, et al., 2022; Ratcliff et al., 2010); and initial evidence from schizophrenia research 
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(Geana et al., 2021) suggests that they can help to personalize treatments. Only a few studies have 

recently begun to concentrate on the use of cognitive markers as moderators of psychosocial 

therapies (Dovis et al., 2019; Fosco et al., 2018; van der Donk et al., 2020). Most of them used 

summary statistics (mean RTs or test scores) to index cognitive characteristics and all of them 

found significant moderations only on near transfer outcome measures such as the performance in 

cognitive tasks that tap into similar concepts as the tasks used in psychosocial therapy.  

We explored whether baseline cognitive testing, analyzed with computational modeling, 

helped to identify moderators of treatment outcome (improvement in parent- and teacher-rated 

inattention). This is important because the overall effect size between treatment groups (NF vs. 

control treatment) in the ICAN study (Arnold et al., 2021) was negligible, almost zero (Cohen’s 

d=0.01, p=0.965). We focused our analysis on three DDM parameters (v, cv, and their interaction) 

shown to be problematic in ADHD (Supplemental Figure S1; see also: Ging-Jehli, Arnold, et al., 

2021; Ging-Jehli, Ratcliff, et al., 2021; C. Huang-Pollock et al., 2017, 2020; Shapiro & Huang-

Pollock, 2019; Weigard & Huang-Pollock, 2014). Drift rate (v) commonly indexes efficiency of 

processes involved in information integration, while drift bias (cv) indexes context sensitivity of 

processes involved in information integration.  

Children with better cognitive abilities (having less extreme differences between v and cv 

and falling into the moderator group NF-) benefitted more from control treatment than NF (shown 

in Figure 2a). However, children with poorer cognitive abilities (having more extreme differences 

between v and cv and falling into the moderator group NF+) benefitted more from NF than control 

treatment. Hence, the effect of NF depended on the children’s cognitive characteristics. In a next 

section (“Contribution to existing cognitive tests”), we discuss theoretical explanations of this 

important finding.  
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Contribution to existing cognitive theories 

Our study contributes to the discussion of the relative importance of the magnification 

account and the compensation account – two hypotheses about the moderating role of initial 

cognitive ability on treatment response, presented in the Introduction (Karbach et al., 2017; 

Lövdén et al., 2012). The magnification account proposed that those with high abilities benefit 

from cognitive-behavioral interventions such as NF. Conversely, the compensation account 

proposed that those with low abilities benefit because they have more room for improvement. We 

found evidence for both accounts because children with high and low abilities (as indexed by the 

DDM parameters, representing latent cognitive components) benefitted more from NF than those 

with average ability.  

Strength and limitations of this study 

A strength of this study is the use of inattention ratings in daily settings as the primary 

outcome, while the cognitive components (moderator variables) stem from a cognitive task that 

was done independently from the primary outcome. Past studies (discussed in the Introduction), 

focused on primary outcomes and moderator variables that were measured in the same setting (e.g., 

working memory skills moderated improvement in other cognitive tasks also known as “near 

transfer measures”, (van der Donk et al., 2020). Another strength is that the inattention ratings 

were assessed by both parents and teachers. This is because a child may behave differently at home 

than at school and ADHD, by definition, is a pervasive disorder, symptomatic in more than one 

setting (American Psychiatric Association [APA], 2013), but with manifestation modified by the 

setting. Hence, averaging parents’ and teachers’ ratings captures the overall functioning of a child 

better than either partial observation.  
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The purpose of this analysis was to identify for which patients the treatment was successful. 

Future studies should also examine what mediated the treatment outcomes in either moderator 

group. A comment in the primary outcome paper (Arnold et al., 2021) may be relevant to this 

discussion. The authors noted that the control treatment (i.e., identical-appearing reinforcement 

from pre-recorded electroencephalograms from other children, referred to as control treatment) in 

an ITT analysis yielded a pre-post effect size (Cohen’s d) of 1.5, considerably greater than 

expected from placebo. They speculated that the control treatment had unintended behavioral/ 

psychotherapeutic effects such that the control NF eliminated the physiological component but 

retained the psychological component of this intervention. Hence, it could be that those with better 

cognitive abilities (falling into the moderator group NF-) did not need the specific physiological 

component to benefit from the therapeutic intervention, while those with poorer cognitive abilities 

(falling into the moderator group NF+) needed both the physiological and psychological 

components. However, these are hypotheses that are outside the scope of this study and that have 

yet to be addressed. 

A limitation of this study is that we applied a DDM analysis to only one cognitive task (the 

only assessment in this study that included single-trial RTs – a necessary measure for applying 

computational modeling). Future studies are needed that apply computational modeling to a battery 

of cognitive tasks to assess which tasks are more/less sensitive to characteristics of ADHD and 

prediction of treatment response. Moreover, this was an exploratory study, and the results need to 

be independently verified.  

All moderators of treatment outcome identify for whom the treatment is best suited 

(Wallace et al., 2013). Some are non-modifiable and can serve only that purpose. Others (e.g., 

comorbidity, symptom profiles) may also suggest possible subtypes of the condition or targets of 
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new interventions, providing implications for both diagnosis and treatment. In fact, this was 

demonstrated for comorbid anxiety and disruptive behavior in the ICAN study (Roley-Roberts et 

al., 2022). The focus of this study was to test whether cognitive components also serve as treatment 

moderators. Future studies could compare similarities and differences between cognitive and 

comorbidity moderators which is outside the scope of this study as it would require a higher sample 

size.  

Summary 

We explored whether latent cognitive components (as identified by computational 

psychiatric tools) can be used to personalize neurofeedback treatment for childhood ADHD.  In 

this randomized clinical trial, only children who fall on the extreme ends of the cognitive spectrum 

(latent cognitive components indexing information processing being either severely aberrant or 

not aberrant at all) benefitted more from neurofeedback than from control treatment.  Pre-treatment 

cognitive testing and computational modeling may allow personalization of treatment. Future 

studies are needed to confirm these exploratory results.  
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Tables 

Table 1. Baseline sample characteristics of the two treatment groups. 

Variable 
Control 

(N = 55) 

NF 

(N = 78) 

Mean (SD) age (years) 8 (1) 8 (1) 

Number of females N (%) 11 (20%) 19 (24%) 

Co-morbid diagnoses N (%) 

Neither ANX nor ODD 

ANX only 

ODD only 

ANX and ODD 

 

19 (34%) 

7 (13%) 

11 (20%) 

18 (33%) 

 

20 (26%) 

20 (26%) 

20 (26%)  

18 (22%) 

Mean T-scores (SD) inattention 75 (9) 75 (9) 

Mean T-scores (SD) hyperactivity-impulsivity 74 (13) 74 (13) 

Mean Full Scale Intelligence Quotient (SD) 113 (19) 108 (14) 

Mean (SD) 

Diffusion decision model parameters 

Drift rate (v) 

Drift bias (cv) 

 

 

0.20 (0.11) 

0.06 (0.14) 

 

 

0.19 (0.12) 

0.04 (0.16) 

Child’s Educational setting N (%) 

Regular public school 

Regular public school with some special classes 

Regular private/parochial school 

Home school 

Charter school 

Special school for developmental disabilities 

 

25 (45%) 

26 (47%) 

1 (2%) 

0 (0%) 

3 (6%) 

0 (0%) 

 

31 (41%) 

26 (33%) 

5 (6%) 

3 (4%) 

12 (16%) 

0 (0%) 

Primary Caregiver’s Education N (%) 

High school/GED or less 

Some college 

College 

Advanced degree 

 

5 (9%) 

11 (20%) 

19 (35%) 

20 (36%) 

 

6 (8%) 

18 (24%) 

33 (41%) 

21 (27%) 

Annual Household Income N (%) 

Less than $23,850 

$23,851-$50,000 

$50,001-$100,000 

More than $100,000 

 

4 (7%) 

8 (15%) 

27 (49%) 

16 (29%) 

 

8 (10%) 

14 (18%) 

31 (40%) 

25 (32%) 

Note. ANX = anxiety disorders only, ODD=oppositional defiant disorder only. T-scores based on 

composite parent- and teacher-ratings. All children were randomly assigned to either control 

treatment or neurofeedback (NF) in a 2:3 double-blind randomization procedure. There is no 

significant difference between NF and control treatment. 
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Table 2. Outcome of the main moderator model analysis (Primary Analysis). 

Variable  B SE  t p 

constant  0.566 0.061  9.250 <0.001 

Trt  -0.040 0.080  -0.499 0.619 

Drift bias (cv)  0.243 0.565  0.430 0.668 

Trt by cv  -0.189 0.729  -0.260 0.796 

Drift rate (v)  -0.536 0.488  -1.099 0.274 

Trt by v  0.342 0.594  0.575 0.566 

cv by v  12.029 4.075  2.952 0.004 

Trt by cv by v  -13.180 4.728  -2.788 0.006 

R2 = 0.2769, MSE = 0.2017         

Note. N = 133. Dependent variable = improvement in inattention (parent- and teacher-rated 

composite scores) from baseline to treatment end (more positive values are better). B = coefficients 

(with cv and v mean-centered). Trt = treatment group; cv (v) indexes the context sensitivity 

(efficiency) of processes involved in information integration (values were averaged across all CPT 

conditions. For details see Method section and Supplement). Moderator analysis was conducted 

by using the PROCESS modeling tool (Hayes, 2013) for moderator/mediator analysis in IBM 

SPSS (details are outlined in the Method section). The three possible moderator effects are 

highlighted in the table.  

 

 

 

Table 3. Importance weights (regression coefficients) assigned to each cognitive component 

to create an integrated moderator score (M) for each child (Follow-up Analysis). 

Variable  B SE  t p 

constant  -0.053 0.031  -1.701 0.089 

Average drift bias (Øcv)  1.696 0.253  6.697 <0.001 

Average drift rate (Øv)  0.160 0.141  1.132 0.257 

Average Øcv-by-Øv   -9.587 1.089  -8.806 <0.001 

R2 = 0.0241, MSE = 0.6308      

Note. Weights in the obtained moderator follow-up analysis. Results from the multiple linear 

regression of the difference in outcome (DO) on the average drift rate, average drift bias, and their 

product. These weights are then applied to each individual v, cv, and v by cv of each child to obtain 

a moderator score (Mj) for each child j, according to the following formula (described in Methods: 

Follow-up analysis): Mj = constant + Øcv*cvj + Øv*vj + Øcv-by-Øv*cvj*vj. 
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Table 4. Moderator Profiles Based on Moderator Scores (M). 

 Variable 

NF- moderator group 

NF not preferable to control 

(M < M*; n = 91) 

NF+ moderator group 

NF preferable to control 

(M > M*; n = 42) 

Number of females (%) 17 (19%) 13 (31%) 

Mean (SD) Full Scale Intelligence Quotient 112 (15) 105 (17) 

Number of children with co-morbid 

diagnosis (%) 
  

neither ANX nor ODD 25 (28%) 14 (34%) 

ODD only 22 (22%) 9 (21%) 

ANX only  19 (22%) 8 (19%) 

ANX and ODD 25 (28%) 11 (26%) 

Number of children with DSM-5 defined 

presentations (%) 
  

ADHD-C 55 (60%) 31 (74%) 

ADHD-I 36 (40%) 11 (26%) 

Mean (SD) T-scores Inattention 75 (7) 76 (6) 

Mean (SD) T-scores HA/Impulsivity 74 (12) 76 (10) 

Note. This table summarizes the sample characteristics of the moderator profiles that characterize the two moderator groups. These 

two moderator groups were created based on the cognitive moderators (v, cv, and their combination) used to calculate the moderator 

scores (M). We do not provide any statistics for group comparisons since there was no “a priori” hypothesis to be tested. 

Abbreviations: NF=neurofeedback, ANX = anxiety disorders only, ODD=oppositional defiant disorder only. ADHD-C and 

ADHD-I refer to the DSM-5 defined presentations. T-scores represent the composite parent- and teacher-ratings.  
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Figures 

 

Figure 1. Predicted improvement in inattention for those children who received neurofeedback 

(NF) versus those who received control treatment (SH) across the observed moderator scores (M). 

Moderator scores have been calculated according to the following formula (detailed in Method 

section: follow-up analysis; and coefficients provided in Table 3): Mj = constant + Øcv*cvj + Øv*vj 

+ Øcv-by-Øv*cvj*vj. The vertical grey lines on each side represent the 5th and 95th percentiles of 

the score distributions (i.e., for all participants, irrespective of their group assignment). The black 

vertical line at M* = -0.004 indicates the estimated clinical cutoff because only individuals with 

M > M* benefitted more from NF (denoted as NF+ moderator group). Improvement in inattention 

represented the average improvement in inattention (from baseline to end of treatment based on 

parent- and teacher-rated composite scores). 91 children (56 in NF, 35 in SH) had a moderator 

score below M*. 42 children (22 in NF, 20 in SH) had a moderator score above M*. 

  



COGNITIVE MODERATORS OF NEUROFEEDBACK 35 

 

Figure 2. a. Parent- and teacher-rated composite inattention (AN) scores (primary treatment 

outcome) at start and end of treatment, respectively; higher score worse. Children were assigned 

to one of four groups based on the moderation analysis (see Figure 1). Figure 2a shows that there 

is a difference between the two moderator groups (NF-, NF+). What matters is the comparison 

between treatment type (NF versus control) within each moderator group. Specifically, there is a 

negative difference between control treatment and NF in the NF- group; while in the NF+ group, 

there is a positive difference. Note that it is well-established that comparing treatment types (i.e., 

NF versus control) across moderator groups (i.e., NF-, NF+) does not reveal any information about 

treatment effect since all sorts of statistical artifacts influence the response within a treatment 

group.  b. Relationship between moderator groups (categorization based on Figure 1; NF+ group 

= NF better than control; NF- group = control better than NF) with respect to the two main 

cognitive components: drift rate (v) and drift bias (cv) (unstandardized in this figure). The 

relationship between v and cv determined which treatment was most effective. Drift rate (v) indexes 

efficiency of information integration across go and no-go trials of all conditions (see Method 

section). Larger v indexes overall faster and more accurate choices. Drift bias (cv) indexes context 

sensitivity. Positive values of cv index higher propensity for “Go” relative to “No-Go” responses. 

Negative values of cv index higher propensity for “No-Go” relative to “Go” responses (with cv 

equal to zero representing the balanced level). The grey line represents the 45 degrees line with 

values on the line suggesting that drift rate and drift bias are proportional to each other. The NF- 

group had less extreme differences between v and cv than the NF+ group, which was characterized 

by either: lower drift rates and higher positive drift biases; or higher drift rates and greater negative 

(i.e., more negative) drift biases. 


